Suppr超能文献

通过同步糖化发酵(SSF)工艺促进从蕉麻纤维中生产氢气和丁醇。

Stirring the hydrogen and butanol production from Enset fiber via simultaneous saccharification and fermentation (SSF) process.

作者信息

Seid Nebyat, Wießner Lea, Aliyu Habibu, Neumann Anke

机构信息

Electrobiotechnology, Institute of Process Engineering in Life Science 2, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany.

School of Chemical and Bio Engineering, Addis Ababa Institute of Technology, Addis Ababa University, P.O.B: 1176, Addis Ababa, Ethiopia.

出版信息

Bioresour Bioprocess. 2024 Oct 10;11(1):96. doi: 10.1186/s40643-024-00809-w.

Abstract

Enset fiber is a promising feedstock for biofuel production with the potential to reduce carbon emissions and improve the sustainability of the energy system. This study aimed to maximize hydrogen and butanol production from Enset fiber through simultaneous saccharification and fermentation (SSF) process in bottles as well as in bioreactor. The SSF process in bottles resulted in a higher butanol concentration of 11.36 g/L with a yield of 0.23 g/g and a productivity of 0.16 g/(L h) at the optimal process parameters of 5% (w/v) substrate loading, 16 FPU/g cellulase loading, and 100 rpm agitation speed from pretreated Enset fiber. Moreover, a comparable result to the bottle experiment was observed in the bioreactor with pH-uncontrolled SSF process, although with a decreased in butanol productivity to 0.095 g/(L h). However, using the pre-hydrolysis simultaneous saccharification and fermentation (PSSF) process in the bioreactor with a 7% (w/v) substrate loading led to the highest butanol concentration of 12.84 g/L with a productivity of 0.104 g/(L h). Furthermore, optimizing the SSF process parameters to favor hydrogen resulted in an increased hydrogen yield of 198.27 mL/g-Enset fiber at atmospheric pressure, an initial pH of 8.0, and 37 °C. In general, stirring the SSF process to shift the product ratio to either hydrogen or butanol was possible by adjusting temperature and pressure. At 37 °C and atmospheric pressure, the process resulted in an e-mol yield of 12% for hydrogen and 38% for butanol. Alternatively, at 30 °C and 0.55 bar overpressure, the process achieved a yield of 6% e-mol of hydrogen and 48% e-mol of butanol. This is the first study to produce hydrogen and butanol from Enset fiber using the SSF process and contributes to the development of a circular bioeconomy.

摘要

蕉麻纤维是一种很有前景的生物燃料生产原料,具有减少碳排放和提高能源系统可持续性的潜力。本研究旨在通过在瓶中以及生物反应器中进行同步糖化发酵(SSF)工艺,实现从蕉麻纤维中最大化生产氢气和丁醇。在瓶中进行的SSF工艺,在底物负载量为5%(w/v)、纤维素酶负载量为16 FPU/g以及预处理蕉麻纤维的搅拌速度为100 rpm的最佳工艺参数下,丁醇浓度更高,达到11.36 g/L,产率为0.23 g/g,生产力为0.16 g/(L·h)。此外,在生物反应器中采用pH不受控的SSF工艺观察到了与瓶实验相当的结果,尽管丁醇生产力降至0.095 g/(L·h)。然而,在生物反应器中采用预水解同步糖化发酵(PSSF)工艺,底物负载量为7%(w/v),导致丁醇浓度最高达到12.84 g/L,生产力为0.104 g/(L·h)。此外,优化SSF工艺参数以利于氢气生产,在大气压、初始pH为8.0和37°C的条件下,氢气产率提高到198.27 mL/g - 蕉麻纤维。一般来说,通过调节温度和压力,可以搅拌SSF工艺来改变产物比例,使其偏向氢气或丁醇。在37°C和大气压下,该工艺的氢气电子摩尔产率为12%,丁醇为38%。或者,在30°C和0.55 bar超压下,该工艺实现了6%电子摩尔的氢气产率和48%电子摩尔的丁醇产率。这是首次使用SSF工艺从蕉麻纤维中生产氢气和丁醇的研究,有助于循环生物经济的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/535a/11466926/f794f3849420/40643_2024_809_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验