Feng Jun, Zong Wenming, Wang Pixiang, Zhang Zhong-Tian, Gu Yanyan, Dougherty Mark, Borovok Ilya, Wang Yi
1Department of Biosystems Engineering, Auburn University, 350 Mell Street, Auburn, AL 36849 USA.
2School of Engineering, Anhui Agricultural University, Hefei, 230036 China.
Biotechnol Biofuels. 2020 May 8;13:84. doi: 10.1186/s13068-020-01723-x. eCollection 2020.
N1-4 (HMT) is a strictly anaerobic, spore-forming Gram-positive bacterium capable of hyper-butanol production through the well-known acetone-butanol-ethanol fermentation process. Recently, five putative RRNPP-type QSSs (here designated as QSS1 to QSS5) were predicted in this bacterial strain, each of which comprises a putative RRNPP-type regulator (QssR1 to QssR5) and a cognate signaling peptide precursor (QssP1 to QssP5). In addition, both proteins are encoded by the same operon. The functions of these multiple RRNPP-type QSSs are unknown.
To elucidate the function of multiple RRNPP-type QSSs as related to cell metabolism and solvent production in N1-4 (HMT), we constructed -deficient mutants ΔR1, ΔR2, ΔR3 and ΔR5 through gene deletion using CRISPR-Cas9 and N1-4-dcas9-R4 (with the QssR4 expression suppressed using CRISPR-dCas9). We also constructed complementation strains by overexpressing the corresponding regulator gene. Based on systematic characterization, results indicate that QSS1, QSS2, QSS3, and QSS5 positively regulate the operon expression and thus solvent production, but they likely negatively regulate cell motility. Consequently, QSS4 might not directly regulate solvent production, but positively affect cell migration. In addition, QSS3 and QSS5 appear to positively regulate sporulation efficiency.
Our study provides the first insights into the roles of multiple RRNPP-type QSSs of for the regulation of solvent production, cell motility, and sporulation. Results of this study expand our knowledge of how multiple paralogous QSSs are involved in the regulation of essential bacterial metabolism pathways.
N1-4(HMT)是一种严格厌氧、形成芽孢的革兰氏阳性菌,能够通过著名的丙酮-丁醇-乙醇发酵过程高产丁醇。最近,在该菌株中预测到了5种假定的RRNPP型群体感应系统(此处命名为QSS1至QSS5),每个系统都包含一个假定的RRNPP型调节因子(QssR1至QssR5)和一个同源信号肽前体(QssP1至QssP5)。此外,这两种蛋白质由同一个操纵子编码。这些多个RRNPP型群体感应系统的功能尚不清楚。
为了阐明多个RRNPP型群体感应系统与N1-4(HMT)细胞代谢和溶剂生产相关的功能,我们使用CRISPR-Cas9通过基因缺失构建了缺陷突变体ΔR1、ΔR2、ΔR3和ΔR5以及N1-4-dcas9-R4(使用CRISPR-dCas9抑制QssR4表达)。我们还通过过表达相应的调节基因构建了互补菌株。基于系统表征,结果表明QSS1、QSS2、QSS3和QSS5正向调节操纵子表达,从而促进溶剂生产,但它们可能负向调节细胞运动。因此,QSS4可能不直接调节溶剂生产,但正向影响细胞迁移。此外,QSS3和QSS5似乎正向调节芽孢形成效率。
我们的研究首次深入了解了多个RRNPP型群体感应系统在调节溶剂生产、细胞运动和芽孢形成中的作用。本研究结果扩展了我们对多个旁系同源群体感应系统如何参与调节细菌基本代谢途径的认识。