Suppr超能文献

时空建模揭示胶质母细胞瘤的高分辨率入侵状态。

Spatiotemporal modeling reveals high-resolution invasion states in glioblastoma.

机构信息

Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada.

Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada.

出版信息

Genome Biol. 2024 Oct 10;25(1):264. doi: 10.1186/s13059-024-03407-3.

Abstract

BACKGROUND

Diffuse invasion of glioblastoma cells through normal brain tissue is a key contributor to tumor aggressiveness, resistance to conventional therapies, and dismal prognosis in patients. A deeper understanding of how components of the tumor microenvironment (TME) contribute to overall tumor organization and to programs of invasion may reveal opportunities for improved therapeutic strategies.

RESULTS

Towards this goal, we apply a novel computational workflow to a spatiotemporally profiled GBM xenograft cohort, leveraging the ability to distinguish human tumor from mouse TME to overcome previous limitations in the analysis of diffuse invasion. Our analytic approach, based on unsupervised deconvolution, performs reference-free discovery of cell types and cell activities within the complete GBM ecosystem. We present a comprehensive catalogue of 15 tumor cell programs set within the spatiotemporal context of 90 mouse brain and TME cell types, cell activities, and anatomic structures. Distinct tumor programs related to invasion align with routes of perivascular, white matter, and parenchymal invasion. Furthermore, sub-modules of genes serving as program network hubs are highly prognostic in GBM patients.

CONCLUSION

The compendium of programs presented here provides a basis for rational targeting of tumor and/or TME components. We anticipate that our approach will facilitate an ecosystem-level understanding of the immediate and long-term consequences of such perturbations, including the identification of compensatory programs that will inform improved combinatorial therapies.

摘要

背景

胶质母细胞瘤细胞通过正常脑组织的弥漫性浸润是导致肿瘤侵袭性、对传统治疗方法的耐药性以及患者预后不良的关键因素。更深入地了解肿瘤微环境(TME)的成分如何促进整体肿瘤组织的形成以及浸润程序,可能会为改进治疗策略提供机会。

结果

为了实现这一目标,我们将一种新的计算工作流程应用于具有时空特征的 GBM 异种移植队列,利用区分人类肿瘤和小鼠 TME 的能力来克服以前在弥漫性浸润分析中的局限性。我们的分析方法基于无监督去卷积,可以在完整的 GBM 生态系统中发现无参考的细胞类型和细胞活性。我们提出了一个全面的 15 种肿瘤细胞程序目录,这些程序设置在 90 种小鼠脑和 TME 细胞类型、细胞活性和解剖结构的时空背景下。与血管周围、白质和实质浸润相关的侵袭性肿瘤程序与浸润途径一致。此外,作为程序网络枢纽的基因亚模块在 GBM 患者中具有高度预后意义。

结论

这里呈现的程序概要为靶向肿瘤和/或 TME 成分提供了基础。我们预计,我们的方法将促进对这种干扰的即时和长期后果的生态系统级理解,包括确定补偿程序,这将为改进的组合治疗提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7da6/11465563/d3e8089430ea/13059_2024_3407_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验