Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA.
Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veteran Affairs Medical Center, Rehabilitation Research and Development, Cleveland, Ohio, USA.
J Neuroimaging. 2024 Nov-Dec;34(6):646-663. doi: 10.1111/jon.13239. Epub 2024 Oct 10.
Spinal cord stimulation (SCS) is approved by the Food and Drug Administration for treating chronic intractable pain in the back, trunk, or limbs through stimulation of the dorsal column. Numerous studies have used swine as an analog of the human spinal cord to better understand SCS and further improve its efficacy. We performed high-resolution imaging of the porcine spinal cord with intact dura mater using micro-computed tomography (μCT) to construct detailed 3-dimensional (3D) visualizations of the spinal cord and characterize the morphology of the dorsal and ventral rootlets.
We obtained spinal cords from Yorkshire/Landrace crossbred swine (N = 7), stained samples with osmium tetroxide, and performed μCT imaging of the T12-T15 levels at isotropic voxel resolutions ranging from 3.3 to 50 μm. We measured the anatomical morphology using the 3D volumes and compared our results to measurements previously collected from swine and human spinal cords via microdissection techniques in prior literature.
While the porcine thoracic-lumbar spinal cord is a popular model for SCS, we highlight multiple notable differences compared to previously published T8-T12 human measurements including rootlet counts (porcine dorsal/ventral: 12.2 ± 2.6, 26.6 ± 3.4; human dorsal/ventral: 5.3 ± 1.3, 4.4 ± 2.4), rootlet angles (porcine ventral-rostral: 161 ± 1°, ventral-caudal: 155 ± 6°, dorsal-rostral: 148 ± 9°, dorsal-caudal: 142 ± 6°; human ventral-rostral: 170 ± 3°, ventral-caudal: 22 ± 10°, dorsal-rostral: 171 ± 3°, dorsal-caudal: 15 ± 7°), and the presence and count of dorsal rootlet bundles.
Detailed measurements and highlighted differences between human and porcine spinal cords can inform variations in modeling and electrophysiological experiments between the two species. In contrast to other approaches for measuring the spinal cord and rootlet morphology, our method keeps the dura intact, reducing potential artifacts from dissection.
脊髓刺激(SCS)已获得美国食品和药物管理局批准,通过刺激背柱来治疗背部、躯干或四肢的慢性难治性疼痛。许多研究使用猪作为人类脊髓的模拟物,以更好地了解 SCS,并进一步提高其疗效。我们使用微计算机断层扫描(μCT)对完整硬脑膜的猪脊髓进行高分辨率成像,构建脊髓的详细三维(3D)可视化,并对背根和腹根的形态进行特征描述。
我们从约克夏/兰德瑞斯杂交猪(N=7)中获得脊髓,用锇四氧化物对样本进行染色,并对 T12-T15 水平进行等像素分辨率的 μCT 成像,范围从 3.3 到 50μm。我们使用 3D 体积进行解剖形态测量,并将我们的结果与之前文献中通过微解剖技术从猪和人脊髓中收集到的测量结果进行比较。
虽然猪的胸腰椎脊髓是 SCS 的常用模型,但与之前发表的 T8-T12 人类测量值相比,我们强调了多个显著差异,包括根突计数(猪的背侧/腹侧:12.2±2.6,26.6±3.4;人背侧/腹侧:5.3±1.3,4.4±2.4)、根突角度(猪腹侧-前:161±1°,腹侧-后:155±6°,背侧-前:148±9°,背侧-后:142±6°;人腹侧-前:170±3°,腹侧-后:22±10°,背侧-前:171±3°,背侧-后:15±7°)以及背根束的存在和数量。
人类和猪脊髓之间的详细测量值和突出差异可以为两种物种之间的建模和电生理实验的差异提供信息。与其他测量脊髓和根突形态的方法相比,我们的方法保持硬脑膜完整,减少了解剖过程中的潜在伪影。