Zhou Zhengyue, Tang Yezhong, Li Rongxun, Wang Wenbo, Dai Zhendong
Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China.
Chengdu Institute of Biology, Chinese Academy of Sciences. No.9 Section 4, Renmin Nan Road, Chengdu 610041, Sichuan, China.
iScience. 2024 Sep 11;27(10):110927. doi: 10.1016/j.isci.2024.110927. eCollection 2024 Oct 18.
Compared to traditional bio-mimic robots, animal robots show superior locomotion, energy efficiency, and adaptability to complex environments but most remained in laboratory stage, needing further development for practical applications like exploration and inspection. Our pigeon robots validated in both laboratory and field, tested with an electrical stimulus unit (2-s duration, 0.5 ms pulse width, 80 Hz frequency). In a fixed stimulus procedure, hovering flight was conducted with 8 stimulus units applied every 2 s after flew over the trigger boundary. In a flexible procedure, stimulus was applied whenever they deviated from a virtual circle, with pulse width gains of 0.1 ms or 0.2 ms according to the trajectory angle. These optimized protocols achieved a success hovering rate of 87.5% and circle curvatures of 0.008 m-1-0.024 m-1, largely advancing the practical application of animal robots.
与传统的仿生机器人相比,动物机器人在运动能力、能源效率以及对复杂环境的适应性方面表现更优,但大多数仍处于实验室阶段,需要进一步发展以用于探索和检查等实际应用。我们的鸽子机器人在实验室和野外均得到验证,使用电刺激单元进行测试(持续时间2秒,脉冲宽度0.5毫秒,频率80赫兹)。在固定刺激程序中,飞越触发边界后每2秒应用8个刺激单元进行悬停飞行。在灵活程序中,每当它们偏离虚拟圆圈时就施加刺激,根据轨迹角度脉冲宽度增益为0.1毫秒或0.2毫秒。这些优化方案实现了87.5%的成功悬停率以及0.008米-1至0.024米-1的圆曲率,极大地推动了动物机器人的实际应用。