Suppr超能文献

利用开源地理数据库增强生态模型中景观异质性的表征

Leveraging Open-Source Geographic Databases to Enhance the Representation of Landscape Heterogeneity in Ecological Models.

作者信息

Gelmi-Candusso Tiziana A, Rodriguez Peter, Fidino Mason, Rivera Kim, Lehrer Elizabeth W, Magle Seth, Fortin Marie-Josée

机构信息

Ecology and Evolutionary Biology Department University of Toronto Toronto Ontario Canada.

Department of Conservation and Science Lincoln Park Zoo Chicago Illinois USA.

出版信息

Ecol Evol. 2024 Oct 10;14(10):e70402. doi: 10.1002/ece3.70402. eCollection 2024 Oct.

Abstract

Wildlife abundance and movement are strongly impacted by landscape heterogeneity, especially in cities which are among the world's most heterogeneous landscapes. Nonetheless, current global land cover maps, which are used as a basis for large-scale spatial ecological modeling, represent urban areas as a single, homogeneous, class. This often requires urban ecologists to rely on geographic resources from local governments, which are not comparable between cities and are not available in underserved countries, limiting the spatial scale at which urban conservation issues can be tackled. The recent expansion of community-based geographic databases, for example, OpenStreetMap (OSM), represents an opportunity for ecologists to generate large-scale maps geared toward their specific research needs. However, computational differences in language and format, and the high diversity of information within, limit the access to these data. We provide a framework, using R, to extract geographic features from the OSM database, classify, and integrate them into global land cover maps. The framework includes an exhaustive list of OSM features describing urban and peri-urban landscapes and is validated by quantifying the completeness of the OSM features characterized, and the accuracy of its final output in 34 cities in North America. We portray its application as the basis for generating landscape variables for ecological analysis by using the OSM-enhanced map to generate an urbanization index, and subsequently analyze the spatial occupancy of six mammals throughout Chicago, Illinois, USA. The OSM features characterized had high completeness values for impervious land cover classes (50%-100%). The final output, the OSM-enhance map, provided an 89% accurate representation of the landscape at 30m resolution. The OSM-derived urbanization index outperformed other global spatial data layers in the spatial occupancy analysis and concurred with previously seen local response trends, whereby lagomorphs and squirrels responded positively to urbanization, while skunks, raccoons, opossums, and deer responded negatively. This study provides a roadmap for ecologists to leverage the fine resolution of open-source geographic databases and apply it to spatial modeling by generating research-specific landscape variables. As our occupancy results show, using context-specific maps can improve modeling outputs and reduce uncertainty, especially when trying to understand anthropogenic impacts on wildlife populations.

摘要

野生动物的数量和活动受到景观异质性的强烈影响,尤其是在城市中,城市是世界上景观最为异质化的地区之一。然而,目前用作大规模空间生态建模基础的全球土地覆盖地图,将城市地区视为单一的、同质化的类别。这通常要求城市生态学家依赖地方政府的地理资源,而这些资源在不同城市之间不可比,在服务不足的国家也无法获取,从而限制了能够解决城市保护问题的空间尺度。例如,基于社区的地理数据库(如OpenStreetMap,简称OSM)的近期扩展,为生态学家提供了一个机会,可生成符合其特定研究需求的大规模地图。然而,语言和格式的计算差异以及其中信息的高度多样性,限制了对这些数据的获取。我们提供了一个使用R语言的框架,用于从OSM数据库中提取地理特征、进行分类,并将其整合到全球土地覆盖地图中。该框架包括一份详尽的OSM特征列表,用于描述城市和城郊景观,并通过量化所表征的OSM特征的完整性及其在北美34个城市的最终输出准确性进行了验证。我们将其应用描述为通过使用OSM增强地图生成城市化指数来生成用于生态分析的景观变量的基础,并随后分析了美国伊利诺伊州芝加哥市六种哺乳动物的空间占有率。所表征的OSM特征在不透水土地覆盖类别方面具有较高的完整性值(50%-100%)。最终输出的OSM增强地图在30米分辨率下对景观的表示准确率为89%。在空间占有率分析中,源自OSM的城市化指数优于其他全球空间数据层,并与先前观察到的局部响应趋势一致,即兔形目动物和松鼠对城市化呈正向响应,而臭鼬、浣熊、负鼠和鹿则呈负向响应。本研究为生态学家利用开源地理数据库的高分辨率并将其应用于通过生成特定研究的景观变量进行空间建模提供了路线图。正如我们的占有率结果所示,使用特定背景的地图可以改善建模输出并减少不确定性,特别是在试图理解人为因素对野生动物种群的影响时。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bfd/11464820/9f5cb31c48f3/ECE3-14-e70402-g004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验