Suppr超能文献

开发和验证一个预测模型,用于评估术中冰冻切片可疑甲状腺结节滤泡性癌的风险。

Development and validation of a predictive model for assessing the risk of follicular carcinoma in thyroid nodules identified as suspicious by intraoperative frozen section.

机构信息

Department of Thyroid Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China.

Ningbo Clinical Diagnostic Pathology Center, Ningbo, China.

出版信息

Front Endocrinol (Lausanne). 2024 Sep 26;15:1431247. doi: 10.3389/fendo.2024.1431247. eCollection 2024.

Abstract

INTRODUCTION

Follicular thyroid carcinoma (FTC) is the second most common thyroid malignancy and is characterized by a higher risk of distant metastasis compared to papillary thyroid cancer. Intraoperative frozen section (IOFS) diagnosis of FTC is challenging due to its limited sensitivity and accuracy, leading to uncertainty in intraoperative surgical decision-making. In response, we developed a predictive model to assess the risk of follicular carcinoma in thyroid nodules identified as suspicious for follicular neoplasm by IOFS.

METHODS

This model was derived from preoperative clinical and ultrasound data of 493 patients who underwent thyroid surgery at Ningbo Medical Center Lihuili Hospital. It identified five significant predictors of follicular carcinoma: nodule size, thyroglobulin (Tg) level, hypoechogenicity, lobulated or irregular margins, and thick halo.

RESULTS

The model demonstrated robust discrimination and calibration, with an area under the curve (AUC) of 0.83 (95% CI: 0.77-0.90) in the training set and 0.78 (95% CI: 0.68-0.88) in the validation set. In addition, it achieved a sensitivity of 81.63% (95% CI: 69.39-91.84) and 68.00% (95% CI: 48.00--4.00), a specificity of 77.42% (95% CI: 72.18-82.66) and 72.51% (95% CI: 65.50-78.96), an accuracy of 78.1% (95% CI: 73.4-82.4) and 71.9% (95% CI: 65.3-78.6), a positive predictive value (PPV) of 41. 67% (95% CI: 35.65-48.84) and 26.79% (95% CI: 19.40-34.33), respectively, and a negative predictive value (NPV) of 95.61% (95% CI: 92.86-97.99) and 94.07% (95% CI: 90.44-97.08) in the training and validation sets, respectively.

CONCLUSION

The model can accurately rule out FTC in low-risk nodules, thereby providing surgeons with a practical tool to determine the necessary extent of surgical intervention for nodules flagged as suspicious by IOFS.

摘要

简介

滤泡状甲状腺癌(FTC)是第二常见的甲状腺恶性肿瘤,与乳头状甲状腺癌相比,其远处转移的风险更高。由于其敏感性和准确性有限,术中冰冻切片(IOFS)诊断 FTC 具有挑战性,导致术中手术决策不确定。为此,我们开发了一种预测模型,以评估通过 IOFS 诊断为滤泡性肿瘤可疑的甲状腺结节中滤泡癌的风险。

方法

该模型源自在宁波医疗中心李惠利医院接受甲状腺手术的 493 名患者的术前临床和超声数据。它确定了五个滤泡癌的显著预测因子:结节大小、甲状腺球蛋白(Tg)水平、低回声、分叶状或不规则边缘和厚晕。

结果

该模型在训练集和验证集中表现出良好的区分度和校准度,曲线下面积(AUC)分别为 0.83(95%CI:0.77-0.90)和 0.78(95%CI:0.68-0.88)。此外,它在训练集和验证集中的敏感性分别为 81.63%(95%CI:69.39-91.84)和 68.00%(95%CI:48.00-68.00),特异性分别为 77.42%(95%CI:72.18-82.66)和 72.51%(95%CI:65.50-78.96),准确性分别为 78.1%(95%CI:73.4-82.4)和 71.9%(95%CI:65.3-78.6),阳性预测值(PPV)分别为 41.67%(95%CI:35.65-48.84)和 26.79%(95%CI:19.40-34.33),阴性预测值(NPV)分别为 95.61%(95%CI:92.86-97.99)和 94.07%(95%CI:90.44-97.08)。

结论

该模型可以准确排除低风险结节中的 FTC,从而为外科医生提供一种实用工具,以确定通过 IOFS 标记为可疑的结节所需的手术干预程度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5156/11464355/af050ec5aff0/fendo-15-1431247-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验