Hillman S S, Withers P C, Hedrick M S, Kimmel P B
J Comp Physiol B. 1985;155(5):577-81. doi: 10.1007/BF00694447.
Graded erythrocythemia was induced by isovolemic loading of packed red blood cells in the toad, Bufo marinus. Blood viscosity, hematocrit, hemoglobin concentration, maximal aortic blood flow rate and maximal rates of oxygen consumption were determined after each load. Blood viscosity was related to hematocrit in the expected exponential manner; ln eta = 0.43 + 0.035 Hct. Maximal blood flow rates in the dorsal aorta were inversely proportional to blood viscosity and fit predictions of the Poiseuille-Hagen flow formula. The effect of increased blood viscosity was to reduce aortic pulse volume, but not maximal heart rate. Maximal systemic oxygen transport capacity (aortic blood flow rate X hemoglobin concentration X O2 binding capacity of hemoglobin) was linearly correlated with the maximal rate of oxygen consumption. These date indicate that optimal hematocrit theory is applicable for maximal blood flow rates in vivo, and that systemic oxygen transport is the primary limitation to aerial VO2 max in amphibians.
通过对海蟾蜍进行等容性红细胞压积增加,诱导其出现分级红细胞增多症。每次加载后,测定血液粘度、红细胞压积、血红蛋白浓度、最大主动脉血流速率和最大耗氧率。血液粘度与红细胞压积呈预期的指数关系;lnη = 0.43 + 0.035Hct。背主动脉的最大血流速率与血液粘度成反比,符合泊肃叶 - 哈根流动公式的预测。血液粘度增加的作用是减少主动脉脉搏容积,但不影响最大心率。最大全身氧运输能力(主动脉血流速率×血红蛋白浓度×血红蛋白的O2结合能力)与最大耗氧率呈线性相关。这些数据表明,最佳红细胞压积理论适用于体内最大血流速率,并且全身氧运输是两栖动物空中最大耗氧量的主要限制因素。