Suppr超能文献

基于遗传算法的机器学习方法在体外受精成功率预测中的比较研究。

Comparative study of machine learning approaches integrated with genetic algorithm for IVF success prediction.

机构信息

Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Department of Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.

出版信息

PLoS One. 2024 Oct 11;19(10):e0310829. doi: 10.1371/journal.pone.0310829. eCollection 2024.

Abstract

INTRODUCTION

IVF is a widely-used assisted reproductive technology with a consistent success rate of around 30%, and improving this rate is crucial due to emotional, financial, and health-related implications for infertile couples. This study aimed to develop a model for predicting IVF outcome by comparing five machine-learning techniques.

METHOD

The research approached five prominent machine learning algorithms, including Random Forest, Artificial Neural Network (ANN), Support Vector Machine (SVM), Recursive Partitioning and Regression Trees (RPART), and AdaBoost, in the context of IVF success prediction. The study also incorporated GA as a feature selection method to enhance the predictive models' robustness.

RESULTS

Findings demonstrate that AdaBoost, particularly when combined with GA feature selection, achieved the highest accuracy rate of 89.8%. Using GA, Random Forest also demonstrated strong performance, achieving an accuracy rate of 87.4%. Genetic Algorithm significantly improved the performance of all classifiers, emphasizing the importance of feature selection. Ten crucial features, including female age, AMH, endometrial thickness, sperm count, and various indicators of oocyte and embryo quality, were identified as key determinants of IVF success.

CONCLUSION

These findings underscore the potential of machine learning and feature selection techniques to assist IVF clinicians in providing more accurate predictions, enabling tailored treatment plans for each patient. Future research and validation can further enhance the practicality and reliability of these predictive models in clinical IVF practice.

摘要

简介

IVF 是一种广泛应用的辅助生殖技术,成功率约为 30%,由于对不孕夫妇的情感、经济和健康方面的影响,提高这一成功率至关重要。本研究旨在通过比较五种机器学习技术来开发一种预测 IVF 结果的模型。

方法

该研究在 IVF 成功预测的背景下,采用了五种著名的机器学习算法,包括随机森林、人工神经网络(ANN)、支持向量机(SVM)、递归分区和回归树(RPART)和 AdaBoost。该研究还采用了 GA 作为特征选择方法,以增强预测模型的稳健性。

结果

研究结果表明,AdaBoost,特别是与 GA 特征选择相结合时,达到了 89.8%的最高准确率。使用 GA,随机森林也表现出了强大的性能,准确率达到了 87.4%。遗传算法显著提高了所有分类器的性能,强调了特征选择的重要性。确定了十个关键特征,包括女性年龄、AMH、子宫内膜厚度、精子计数以及卵子和胚胎质量的各种指标,这些都是 IVF 成功的关键决定因素。

结论

这些发现强调了机器学习和特征选择技术在为 IVF 临床医生提供更准确预测方面的潜力,从而为每位患者制定个性化的治疗计划。未来的研究和验证可以进一步提高这些预测模型在临床 IVF 实践中的实用性和可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9438/11469510/150c48cef451/pone.0310829.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验