Qian Yang, Du Yuxuan, He Zhenliang, Hsieh Min-Hsiu, Tao Dacheng
School of Computer Science, Faculty of Engineering, <a href="https://ror.org/0384j8v12">University of Sydney</a>, New South Wales 2008, Australia.
College of Computing and Data Science, <a href="https://ror.org/02e7b5302">Nanyang Technological University</a>, Singapore 639798, Singapore.
Phys Rev Lett. 2024 Sep 27;133(13):130601. doi: 10.1103/PhysRevLett.133.130601.
Cross-platform verification, a critical undertaking in the realm of early-stage quantum computing, endeavors to characterize the similarity of two imperfect quantum devices executing identical algorithms, utilizing minimal measurements. While the random measurement approach has been instrumental in this context, the quasiexponential computational demand with increasing qubit count hurdles its feasibility in large-qubit scenarios. To bridge this knowledge gap, here we introduce an innovative multimodal learning approach, recognizing that the formalism of data in this task embodies two distinct modalities: measurement outcomes and classical description of compiled circuits on explored quantum devices, both containing unique information about the quantum devices. Building upon this insight, we devise a multimodal neural network to independently extract knowledge from these modalities, followed by a fusion operation to create a comprehensive data representation. The learned representation can effectively characterize the similarity between the explored quantum devices when executing new quantum algorithms not present in the training data. We evaluate our proposal on platforms featuring diverse noise models, encompassing system sizes up to 50 qubits. The achieved results demonstrate an improvement of 3 orders of magnitude in prediction accuracy compared to the random measurements and offer compelling evidence of the complementary roles played by each modality in cross-platform verification. These findings pave the way for harnessing the power of multimodal learning to overcome challenges in wider quantum system learning tasks.
跨平台验证是早期量子计算领域的一项关键任务,旨在利用最少的测量来表征执行相同算法的两个不完美量子设备的相似性。虽然随机测量方法在此背景下发挥了作用,但随着量子比特数的增加,其准指数级的计算需求阻碍了其在大量子比特场景中的可行性。为了弥补这一知识差距,我们在此引入一种创新的多模态学习方法,认识到该任务中的数据形式体现了两种不同的模态:测量结果和所探索量子设备上编译电路的经典描述,两者都包含有关量子设备的独特信息。基于这一见解,我们设计了一个多模态神经网络,以独立地从这些模态中提取知识,随后进行融合操作以创建全面的数据表示。当执行训练数据中不存在的新量子算法时,所学习的表示可以有效地表征所探索量子设备之间的相似性。我们在具有不同噪声模型的平台上评估我们的提议,涵盖高达50个量子比特的系统规模。与随机测量相比,所取得的结果表明预测精度提高了3个数量级,并有力地证明了每种模态在跨平台验证中所发挥的互补作用。这些发现为利用多模态学习的力量来克服更广泛的量子系统学习任务中的挑战铺平了道路。