Suppr超能文献

基于数据增强神经模型的噪声不可知量子误差缓解

Noise-agnostic quantum error mitigation with data augmented neural models.

作者信息

Liao Manwen, Zhu Yan, Chiribella Giulio, Yang Yuxiang

机构信息

QICI Quantum Information and Computation Initiative, Department of Computer Science, The University of Hong Kong, Pok Fu Lam, Hong Kong.

Department of Computer Science, Oxford, UK.

出版信息

npj Quantum Inf. 2025;11(1):8. doi: 10.1038/s41534-025-00960-y. Epub 2025 Jan 18.

Abstract

Quantum error mitigation, a data processing technique for recovering the statistics of target processes from their noisy version, is a crucial task for near-term quantum technologies. Most existing methods require prior knowledge of the noise model or the noise parameters. Deep neural networks have the potential to lift this requirement, but current models require training data produced by ideal processes in the absence of noise. Here we build a neural model that achieves quantum error mitigation without any prior knowledge of the noise and without training on noise-free data. To achieve this feature, we introduce a quantum augmentation technique for error mitigation. Our approach applies to quantum circuits and to the dynamics of many-body and continuous-variable quantum systems, accommodating various types of noise models. We demonstrate its effectiveness by testing it both on simulated noisy circuits and on real quantum hardware.

摘要

量子误差缓解是一种用于从噪声版本中恢复目标过程统计信息的数据处理技术,对于近期量子技术而言是一项关键任务。大多数现有方法都需要噪声模型或噪声参数的先验知识。深度神经网络有潜力消除这一要求,但当前模型需要在无噪声情况下由理想过程产生的训练数据。在此,我们构建了一个神经模型,该模型无需任何噪声先验知识,也无需在无噪声数据上进行训练就能实现量子误差缓解。为实现这一特性,我们引入了一种用于误差缓解的量子增强技术。我们的方法适用于量子电路以及多体和连续变量量子系统的动力学,可适应各种类型的噪声模型。我们通过在模拟噪声电路和真实量子硬件上进行测试来证明其有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d519/11742722/c774106e5416/41534_2025_960_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验