Suppr超能文献

通过转移学习机制提高新型 HIV-1 蛋白酶抑制剂耐药性的预测效果。

Improving Predictive Efficacy for Drug Resistance in Novel HIV-1 Protease Inhibitors through Transfer Learning Mechanisms.

机构信息

Department of Biostatistics and Medical Informatics, School of Medicine, Bahcesehir University, Istanbul 34734, Turkey.

Department of Mathematical Engineering, Istanbul Technical University, Istanbul 34469, Turkey.

出版信息

J Chem Inf Model. 2024 Oct 28;64(20):7844-7863. doi: 10.1021/acs.jcim.4c01037. Epub 2024 Oct 11.

Abstract

The human immunodeficiency virus presents a significant global health challenge due to its rapid mutation and the development of resistance mechanisms against antiretroviral drugs. Recent studies demonstrate the impressive performance of machine learning (ML) and deep learning (DL) models in predicting the drug resistance profile of specific FDA-approved inhibitors. However, generalizing ML and DL models to learn not only from isolates but also from inhibitor representations remains challenging for HIV-1 infection. We propose a novel drug-isolate-fold change (DIF) model framework that aims to predict drug resistance score directly from the protein sequence and inhibitor representation. Various ML and DL models, inhibitor representations, and protein representations were analyzed through realistic validation mechanisms. To enhance the molecular learning capacity of DIF models, we employ a transfer learning approach by pretraining a graph neural network (GNN) model for activity prediction on a data set of 4855 HIV-1 protease inhibitors (PIs). By performing various realistic validation strategies on internal and external genotype-phenotype data sets, we statistically show that the learned representations of inhibitors improve the predictive ability of DIF-based ML and DL models. We achieved an accuracy of 0.802, AUROC of 0.874, and of 0.727 for the unseen external PIs. By comparing the DIF-based models with a null model consisting of isolate-fold change (IF) architecture, it is observed that the DIF models significantly benefit from molecular representations. Combined results from various testing strategies and statistical tests confirm the effectiveness of DIF models in testing novel PIs for drug resistance in the presence of an isolate.

摘要

人类免疫缺陷病毒(HIV)因其快速突变和抗逆转录病毒药物耐药机制的发展,对全球健康构成了重大挑战。最近的研究表明,机器学习(ML)和深度学习(DL)模型在预测特定 FDA 批准的抑制剂耐药谱方面表现出色。然而,将 ML 和 DL 模型推广到不仅从分离株而且从抑制剂表示中学习仍然是 HIV-1 感染的一个挑战。我们提出了一种新的药物-分离株变化比(DIF)模型框架,旨在直接从蛋白质序列和抑制剂表示预测耐药评分。通过现实的验证机制分析了各种 ML 和 DL 模型、抑制剂表示和蛋白质表示。为了增强 DIF 模型的分子学习能力,我们采用了迁移学习方法,通过在 4855 个 HIV-1 蛋白酶抑制剂(PI)数据集上对活性预测进行图神经网络(GNN)模型的预训练。通过对内部和外部基因型-表型数据集执行各种现实的验证策略,我们从统计学上表明,抑制剂的学习表示提高了基于 DIF 的 ML 和 DL 模型的预测能力。我们在未见的外部 PI 上实现了 0.802 的准确性、0.874 的 AUROC 和 0.727 的召回率。通过将 DIF 模型与由分离株变化比(IF)架构组成的空模型进行比较,观察到 DIF 模型从分子表示中显著受益。各种测试策略和统计测试的综合结果证实了 DIF 模型在存在分离株的情况下测试新型 PI 耐药性的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验