Suppr超能文献

机器学习可解释性方法用于确定血液生物标志物在预测疑似感染患者预后中的重要性。

Machine learning interpretability methods to characterize the importance of hematologic biomarkers in prognosticating patients with suspected infection.

机构信息

Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.

Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Center for Clinical Informatics Research and Education, MetroHealth System, Cleveland, OH, USA.

出版信息

Comput Biol Med. 2024 Dec;183:109251. doi: 10.1016/j.compbiomed.2024.109251. Epub 2024 Oct 12.

Abstract

OBJECTIVE

To evaluate the effectiveness of Monocyte Distribution Width (MDW) in predicting sepsis outcomes in emergency department (ED) patients compared to other hematologic parameters and vital signs, and to determine whether routine parameters could substitute MDW in machine learning models.

METHODS

We conducted a retrospective analysis of data from 10,229 ED patients admitted to a large regional safety-net hospital in Cleveland, Ohio who had suspected infections and developed sepsis-associated poor outcomes. We developed a new analytical framework consisting of seven data models and an ensemble of high accuracy machine learning (ML) algorithms (accuracy values ranging from 0.83 to 0.90) to predict sepsis-associated poor outcomes (3-day intensive care unit stay or death). Local Interpretable Model-Agnostic Explanation (LIME) and Shapley Additive Value (SHAP) interpretability methods were utilized to assess the contributions of individual hematologic parameters.

RESULTS

The ML interpretability analysis indicated that the predictive value of MDW is significantly reduced when other hematological parameters and vital signs are considered. The results suggest that complete blood count with differential (CBD-DIFF) alongside vital signs can effectively replace MDW in high accuracy machine learning algorithms for screening poor outcome associated with sepsis.

CONCLUSION

MDW, although a newly approved biomarker for sepsis, does not significantly enhance prediction models when combined with routinely available parameters and vital signs. Hospitals, especially those with resource constraints, can rely on existing parameters with high accuracy machine learning models to predict sepsis outcomes effectively, thereby reducing the need for specialized tests like MDW.

摘要

目的

评估单核细胞分布宽度(MDW)在预测急诊科(ED)患者脓毒症结局方面的有效性,与其他血液学参数和生命体征进行比较,并确定常规参数是否可以替代 MDW 用于机器学习模型。

方法

我们对来自俄亥俄州克利夫兰市一家大型地区性保障医院的 10229 名疑似感染并发生与脓毒症相关不良结局的 ED 患者的数据进行了回顾性分析。我们开发了一个新的分析框架,包括七个数据模型和一组高精度机器学习(ML)算法(准确性值在 0.83 到 0.90 之间),以预测与脓毒症相关的不良结局(3 天 ICU 入住或死亡)。利用局部可解释模型不可知解释(LIME)和 Shapley 加值(SHAP)解释性方法评估单个血液学参数的贡献。

结果

ML 可解释性分析表明,当考虑其他血液学参数和生命体征时,MDW 的预测值显著降低。结果表明,完整的白细胞计数与差异(CBD-DIFF)以及生命体征可以有效地替代 MDW 在高精度机器学习算法中用于筛选与脓毒症相关的不良结局。

结论

尽管 MDW 是一种新批准的脓毒症生物标志物,但当与常规可用参数和生命体征结合使用时,它并不能显著增强预测模型。医院,特别是那些资源有限的医院,可以依靠高精度的机器学习模型和现有的参数来有效地预测脓毒症的结局,从而减少对 MDW 等专门测试的需求。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验