Suppr超能文献

从脓毒症中汲取的机器学习模型部署经验教训。

Lessons in machine learning model deployment learned from sepsis.

机构信息

Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Healthcare Innovation Lab, BJC HealthCare, St. Louis, MO 63110, USA.

Department of Learning Health Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Urology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; School of Information, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

Med. 2022 Sep 9;3(9):597-599. doi: 10.1016/j.medj.2022.08.003.

Abstract

In three recent and related publications, researchers from Johns Hopkins University and Bayesian Health report results from implementing and prospectively evaluating the Targeted Real-time Early Warning System (TREWS) for sepsis at five hospitals..

摘要

在最近的三篇相关出版物中,约翰霍普金斯大学和贝叶斯健康的研究人员报告了在五家医院实施和前瞻性评估脓毒症靶向实时早期预警系统 (TREWS) 的结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验