Verde-Sesto Ester, Asenjo-Sanz Isabel, Juranyi Fanni, Pomposo José A, Maiz Jon
Centro de Física de Materiales (CFM) (CSIC-UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizábal 5, 20018 Donostia-San Sebastián, Spain; IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain.
Centro de Física de Materiales (CFM) (CSIC-UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizábal 5, 20018 Donostia-San Sebastián, Spain.
J Colloid Interface Sci. 2025 Feb;679(Pt A):785-797. doi: 10.1016/j.jcis.2024.10.027. Epub 2024 Oct 6.
The industrial sector has made significant strides in the development of multicomponent and multiphasic polymer materials, including polymer blends, composites (such as nanocomposites), and various copolymers. Random copolymers, characterized by their statistical arrangement of repeating units, are particularly noteworthy due to their tunability from amorphous to semicrystalline states. In this study, we focus on poly(tetrahydrofuran-ran-epichlorohydrin) (P(THF-ran-ECH)) copolymers, which serve as precursors for single-chain nanoparticles (SCNPs). These SCNP-based materials are of particular interest as they bridge the gap between traditional polymers and colloids. This research comprehensively investigates how the type and degree of internal cross-linking influence the structure and dynamics of P(THF-ran-ECH) copolymers and their SCNPs. Techniques such as quasielastic neutron scattering (QENS), differential scanning calorimetry (DSC), and broadband dielectric spectroscopy (BDS) were employed to study copolymers with varying compositions and levels of cross-linking. By analyzing two samples with different epichlorohydrin (ECH) contents (13 mol% and 27 mol%), we aim to control crystallization and explore its effects on dynamic behavior. Our results show that both the composition and the degree of cross-linking significantly impact the dynamics of the SCNPs, with SCNPs exhibiting slower dynamics compared to their precursor copolymers. Furthermore, semicrystalline samples display faster dynamics in SCNPs than amorphous samples. These findings provide valuable insights for the design and optimization of advanced multicomponent polymer systems.
工业部门在多组分和多相聚合物材料的开发方面取得了重大进展,包括聚合物共混物、复合材料(如纳米复合材料)以及各种共聚物。无规共聚物以其重复单元的统计排列为特征,由于其可从非晶态调节到半晶态,因而特别值得关注。在本研究中,我们聚焦于聚(四氢呋喃 - 无规 - 环氧氯丙烷)(P(THF - ran - ECH))共聚物,它们是单链纳米粒子(SCNP)的前体。这些基于SCNP的材料特别受关注,因为它们弥合了传统聚合物和胶体之间的差距。本研究全面调查了内部交联的类型和程度如何影响P(THF - ran - ECH)共聚物及其SCNP的结构和动力学。采用了诸如准弹性中子散射(QENS)、差示扫描量热法(DSC)和宽带介电谱(BDS)等技术来研究具有不同组成和交联水平的共聚物。通过分析两种具有不同环氧氯丙烷(ECH)含量(13摩尔%和27摩尔%)的样品,我们旨在控制结晶并探索其对动态行为的影响。我们的结果表明,组成和交联程度均对SCNP的动力学有显著影响,与它们的前体共聚物相比,SCNP表现出较慢的动力学。此外,半晶态样品在SCNP中的动力学比非晶态样品更快。这些发现为先进多组分聚合物体系的设计和优化提供了有价值的见解。