McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
Intelligent Medical Objects, Rosemont, IL 60018, USA.
J Biomed Inform. 2024 Nov;159:104735. doi: 10.1016/j.jbi.2024.104735. Epub 2024 Oct 10.
Medical laboratory testing is essential in healthcare, providing crucial data for diagnosis and treatment. Nevertheless, patients' lab testing results are often transferred via fax across healthcare organizations and are not immediately available for timely clinical decision making. Thus, it is important to develop new technologies to accurately extract lab testing information from scanned laboratory reports. This study aims to develop an advanced deep learning-based Optical Character Recognition (OCR) method to identify tables containing lab testing results in scanned laboratory reports.
Extracting tabular data from scanned lab reports involves two stages: table detection (i.e., identifying the area of a table object) and table recognition (i.e., identifying and extracting tabular structures and contents). DETR R18 algorithm as well as YOLOv8s were involved for table detection, and we compared the performance of PaddleOCR and the encoder-dual-decoder (EDD) model for table recognition. 650 tables from 632 randomly selected laboratory test reports were annotated and used to train and evaluate those models. For table detection evaluation, we used metrics such as Average Precision (AP), Average Recall (AR), AP50, and AP75. For table recognition evaluation, we employed Tree-Edit Distance (TEDS).
For table detection, fine-tuned DETR R18 demonstrated superior performance (AP50: 0.774; AP75: 0.644; AP: 0.601; AR: 0.766). In terms of table recognition, fine-tuned EDD outperformed other models with a TEDS score of 0.815. The proposed OCR pipeline (fine-tuned DETR R18 and fine-tuned EDD), demonstrated impressive results, achieving a TEDS score of 0.699 and a TEDS structure score of 0.764.
Our study presents a dedicated OCR pipeline for scanned clinical documents, utilizing state-of-the-art deep learning models for region-of-interest detection and table recognition. The high TEDS scores demonstrate the effectiveness of our approach, which has significant implications for clinical data analysis and decision-making.
医学实验室检测在医疗保健中至关重要,为诊断和治疗提供关键数据。然而,患者的实验室检测结果通常通过传真在医疗机构之间传输,无法及时用于临床决策。因此,开发新技术以准确从扫描的实验室报告中提取实验室检测信息非常重要。本研究旨在开发一种基于先进深度学习的光学字符识别(OCR)方法,以识别扫描实验室报告中包含实验室检测结果的表格。
从扫描的实验室报告中提取表格数据涉及两个阶段:表格检测(即识别表格对象的区域)和表格识别(即识别和提取表格结构和内容)。DETR R18 算法和 YOLOv8s 用于表格检测,我们比较了 PaddleOCR 和编码器-双解码器(EDD)模型在表格识别方面的性能。从 632 份随机选择的实验室测试报告中抽取了 650 个表格进行标注,并用于训练和评估这些模型。对于表格检测评估,我们使用了平均精度(AP)、平均召回率(AR)、AP50 和 AP75 等指标。对于表格识别评估,我们采用了树编辑距离(TEDS)。
对于表格检测,微调后的 DETR R18 表现出优异的性能(AP50:0.774;AP75:0.644;AP:0.601;AR:0.766)。在表格识别方面,微调后的 EDD 模型的 TEDS 得分优于其他模型,为 0.815。所提出的 OCR 流水线(微调后的 DETR R18 和微调后的 EDD)表现出令人印象深刻的结果,TEDS 得分为 0.699,TEDS 结构得分为 0.764。
本研究提出了一种专门用于扫描临床文档的 OCR 流水线,利用最先进的深度学习模型进行感兴趣区域检测和表格识别。高 TEDS 得分表明了我们方法的有效性,这对临床数据分析和决策具有重要意义。