Koronatov Aleksandr, Sakharov Pavel, Ranolia Deepak, Kaushansky Alexander, Fridman Natalia, Gandelman Mark
Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Israel.
Nat Chem. 2025 Jan;17(1):101-110. doi: 10.1038/s41557-024-01653-3. Epub 2024 Oct 11.
Alkenes are broadly used in synthetic applications, thanks to their abundance and versatility. Ozonolysis is one of the most canonical transformations that converts alkenes into molecules bearing carbon-oxygen motifs via C=C bond cleavage. Despite its extensive use in both industrial and laboratory settings, the aza version-cleavage of alkenes to form carbon-nitrogen bonds-remains elusive. Here we report the conversion of alkenes into valuable amines via complete C=C bond disconnection. This process, which we have termed 'triazenolysis', is initiated by a (3 + 2) cycloaddition of triazadienium cation to an alkene. The triazolinium salt formed accepts hydride from borohydride anion and spontaneously decomposes to create new C-N motifs upon further reduction. The developed reaction is applicable to a broad range of cyclic alkenes to produce diamines, while various acyclic C=C bonds may be broken to generate two separate amine units. Computational analysis provides insights into the mechanism, including identification of the key step and elucidating the significance of Lewis acid catalysis.
烯烃因其丰富性和多功能性而广泛应用于合成领域。臭氧分解是最典型的转化反应之一,它通过碳碳双键的断裂将烯烃转化为带有碳氧基团的分子。尽管其在工业和实验室环境中都有广泛应用,但烯烃的氮杂版本——通过碳碳双键断裂形成碳氮键——仍然难以实现。在此,我们报道了通过完全断开碳碳双键将烯烃转化为有价值的胺类。我们将这个过程称为“三氮烯分解”,它由三氮二烯鎓阳离子与烯烃的(3 + 2)环加成反应引发。形成的三唑啉鎓盐从硼氢化物阴离子接受氢化物,并在进一步还原时自发分解以形成新的碳氮基团。所开发的反应适用于多种环状烯烃以生成二胺,同时各种碳碳双键可被断裂以生成两个独立的胺单元。计算分析为该反应机理提供了深入见解,包括确定关键步骤并阐明路易斯酸催化的重要性。