Zhu Yingguang, Cornwall Richard G, Du Haifeng, Zhao Baoguo, Shi Yian
Department of Chemistry, Colorado State University , Fort Collins, Colorado 80523, United States.
Acc Chem Res. 2014 Dec 16;47(12):3665-78. doi: 10.1021/ar500344t. Epub 2014 Nov 17.
Vicinal diamines are important structural motifs present in various biologically and chemically significant molecules. Direct diamination of olefins provides an effective approach to this class of compounds. Unlike well-established oxidation processes such as epoxidation, dihydroxylation, and aminohydroxylation, direct diamination of olefins had remained a long-standing challenge and had been less well developed. In this Account, we summarize our recent studies on Pd(0)- and Cu(I)-catalyzed diaminations of olefins using di-tert-butyldiaziridinone and its related analogues as nitrogen sources via N-N bond activation. A wide variety of imidazolidinones, cyclic sulfamides, indolines, imidazolinones, and cyclic guanidines can be obtained from conjugated dienes and terminal olefins. For conjugated dienes, the diamination proceeds regioselectively at the internal double bond with the Pd(0) catalyst. Mechanistic studies show that the diamination likely involves a four-membered Pd(II) species resulting from the insertion of Pd(0) into the N-N bond of di-tert-butyldiaziridinone. Interestingly, the Cu(I)-catalyzed process occurs regioselectively at either the terminal or internal double bond depending on the reaction conditions via two mechanistically distinct pathways. The Cu(I) catalyst cleaves the N-N bond of di-tert-butyldiaziridinone to form a Cu(II) nitrogen radical and a four-membered Cu(III) species, which are likely in rapid equilibrium. The Cu(II) nitrogen radical and the four-membered Cu(III) species lead to the terminal and internal diamination, respectively. Terminal olefins are effectively C-H diaminated at the allylic and homoallylic carbons with Pd(0) as catalyst and di-tert-butyldiaziridinone as nitrogen source, likely involving a diene intermediate generated in situ from the terminal olefin via formation of a π-allyl Pd complex and subsequent β-hydride elimination. When di-tert-butylthiadiaziridine 1,1-dioxide is used as nitrogen source, cyclic sulfamides are installed at the terminal carbons via a dehydrogenative diamination process. When α-methylstyrenes (lacking homoallylic hydrogens) react with Pd(0) and di-tert-butyldiaziridinone, spirocyclic indolines are formed with generation of four C-N bonds and one spiro quaternary carbon via allylic and aromatic C-H amination. With Cu(I) catalysts, various terminal olefins can be effectively diaminated at the double bonds using di-tert-butyldiaziridinone, di-tert-butylthiadiaziridine 1,1-dioxide, and 1,2-di-tert-butyl-3-(cyanimino)-diaziridine as nitrogen sources, giving a variety of imidazolidinones, cyclic sulfamides, and cyclic guanidines in good yields, respectively. In the case of monosubstituted olefins using di-tert-butyldiaziridinone as nitrogen source, the resulting diamination products (imidazolidinones) are readily dehydrogenated under the reaction conditions, leading to the corresponding imidazolinones in good yields. Esters can also be diaminated to form the corresponding hydantoins with di-tert-butyldiaziridinone in the presence of a Cu(I) catalyst. A radical mechanism is likely to be operating in these Cu(I)-catalyzed reaction processes. Asymmetric processes have also been developed for the Pd(0)- and Cu(I)-catalyzed diamination reactions. Biologically active compounds such as (+)-CP-99,994 and Sch 425078 have been synthesized via the diamination processes. The diamination reactions described herein provide efficient methods to access a wide variety of vicinal diamines from readily available olefins and show great potential for synthetic applications.
邻二胺是存在于各种具有生物学和化学意义的分子中的重要结构单元。烯烃的直接双胺化反应为这类化合物提供了一种有效方法。与诸如环氧化、二羟基化和氨基羟基化等成熟的氧化过程不同,烯烃的直接双胺化一直是一个长期存在的挑战,且发展程度较低。在本综述中,我们总结了我们最近关于使用二叔丁基二氮杂环丙烷及其相关类似物作为氮源,通过N-N键活化实现钯(0)和铜(I)催化的烯烃双胺化反应的研究。从共轭二烯和末端烯烃可以得到各种各样的咪唑啉酮、环状磺酰胺、二氢吲哚、咪唑啉酮和环状胍。对于共轭二烯,使用钯(0)催化剂时,双胺化反应在内部双键处区域选择性地进行。机理研究表明,双胺化反应可能涉及由钯(0)插入二叔丁基二氮杂环丙烷的N-N键而产生的四元钯(II)物种。有趣的是,铜(I)催化的反应过程根据反应条件通过两种不同的机理途径在末端或内部双键处区域选择性地发生。铜(I)催化剂裂解二叔丁基二氮杂环丙烷的N-N键形成一个铜(II)氮自由基和一个四元铜(III)物种,它们可能处于快速平衡状态。铜(II)氮自由基和四元铜(III)物种分别导致末端和内部双胺化。以钯(0)为催化剂,二叔丁基二氮杂环丙烷为氮源,末端烯烃在烯丙基和高烯丙基碳上有效地进行C-H双胺化反应,可能涉及由末端烯烃通过形成π-烯丙基钯配合物并随后进行β-氢消除原位生成的二烯中间体。当使用二叔丁基硫代二氮杂环丙烷1,1-二氧化物作为氮源时,通过脱氢双胺化过程在末端碳上引入环状磺酰胺。当α-甲基苯乙烯(缺乏高烯丙基氢)与钯(0)和二叔丁基二氮杂环丙烷反应时,通过烯丙基和芳香C-H胺化反应形成螺环二氢吲哚,同时生成四个C-N键和一个螺环季碳。使用铜(I)催化剂时,各种末端烯烃可以使用二叔丁基二氮杂环丙烷、二叔丁基硫代二氮杂环丙烷1,1-二氧化物和1,2-二叔丁基-3-(氰基亚氨基)-二氮杂环丙烷作为氮源在双键处有效地进行双胺化反应,分别以良好的产率得到各种咪唑啉酮、环状磺酰胺和环状胍。在使用二叔丁基二氮杂环丙烷作为氮源的单取代烯烃的情况下,所得的双胺化产物(咪唑啉酮)在反应条件下很容易脱氢,以良好的产率得到相应的咪唑啉酮。酯也可以在铜(I)催化剂存在下与二叔丁基二氮杂环丙烷进行双胺化反应形成相应的乙内酰脲。在这些铜(I)催化的反应过程中可能涉及自由基机理。还开发了用于钯(0)和铜(I)催化的双胺化反应的不对称过程。已经通过双胺化反应合成了诸如(+)-CP-99,994和Sch 425078等生物活性化合物。本文所述的双胺化反应提供了从易得的烯烃获得各种邻二胺的有效方法,并显示出巨大的合成应用潜力。