Suppr超能文献

采用化学计量学的 HS-SPME-GCMS、NIRS 和荧光数据融合,有可能探索秦艽根茎的地理来源。

Data fusion of HS-SPME-GCMS, NIRS, and fluorescence, using chemometrics, has the potential to explore the geographical origin of gentian rhizomes.

机构信息

Université Bourgogne Franche-Comté, Institut Agro, Université Bourgogne, INRAE, UMR PAM 1517, 21000 Dijon, France.

Institut Agro Dijon, Direction Scientifique, Cellule d'Appui à la Recherche en sciences des données, 21000 Dijon, France; LIB, Laboratoire d'Informatique de Bourgogne, 21000 Dijon, France.

出版信息

Food Chem. 2025 Feb 1;464(Pt 1):141564. doi: 10.1016/j.foodchem.2024.141564. Epub 2024 Oct 9.

Abstract

Gentiana lutea rhizomes are known for their bitter tasting properties conferred by its unique biochemical content. They are currently of interest in phytotherapy, animal nutrition, food processing, cosmetic applications and agroecology. In this study, a NIRS, fluorescence and HS-SPME-GCMS dataset of 55 rhizomes from four different French mountains (Alpes, Jura, Massif Central and Pyrénées) was collected with the aim of assessing the variability of Gentiana lutea composition at different scales. The feasibility of data fusion strategies was demonstrated to be effective in distinguishing the geographical origin of Gentiana lutea roots over a wide area. The results suggest that data fusion methods have the potential to be more effective in the quality of separation of studied sites of Gentiana lutea roots than individual decisions obtained from individual analytical tools. However, to guarantee the geographical origin of Gentiana lutea roots within a single massif using these techniques, environmental factors must be considered.

摘要

藏红花根茎以其独特的生化成分赋予的苦味而闻名。它们目前在植物疗法、动物营养、食品加工、化妆品应用和农业生态学中引起了关注。在这项研究中,我们收集了来自法国四个不同山脉(阿尔卑斯山、汝拉山、中央高原和比利牛斯山)的 55 个根茎的 NIRS、荧光和 HS-SPME-GCMS 数据集,旨在评估 Gentiana lutea 成分在不同尺度上的变异性。结果表明,数据融合方法在区分 Gentiana lutea 根茎的地理来源方面具有有效性,可应用于更广泛的区域。研究结果表明,与从单个分析工具获得的单个决策相比,数据融合方法有可能更有效地分离 Gentiana lutea 根茎的研究地点的质量。然而,为了使用这些技术保证 Gentiana lutea 根茎的地理来源,必须考虑环境因素。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验