Center of Mathematics Computing and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil; School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
Center of Mathematics Computing and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil.
Behav Brain Res. 2025 Feb 4;477:115288. doi: 10.1016/j.bbr.2024.115288. Epub 2024 Oct 11.
Spatial cognition plays a crucial role in our daily lives. The relationship between spatial abilities and mathematical performance is well-established, with visuospatial training offering significant benefits in academic STEM (Science, Technology, Engineering, and Mathematics) disciplines. Developing visuospatial training requires an objective evaluation of spatial cognition and consideration of various 3D displays. This study aims to compare the neural efficiency of STEM and non-STEM individuals during mental rotation tasks (MRT) in 3D and 2.5D conditions (pseudo 3D) using virtual reality (VR). For that, we propose a novel integrative assessment of spatial cognition by combining a cost-effective VR headset and functional near-infrared spectroscopy (fNIRS). Overall, the findings reveal that STEM individuals exhibit greater neural efficiency in the dorsolateral prefrontal cortex (PFC) while solving MRT in a VR environment compared to their non-STEM counterparts. Additionally, the study shows that there is no significant difference in performance between 3D and 2.5D stimuli, suggesting that both conditions are equally suitable for MRT in VR. One possible explanation is that immersive VR reduces the distinctions between 3D models and 2.5D images, considering MRT scores and PFC activity. This research underscores the practicality and relevance of using VR and fNIRS to evaluate visuospatial tasks and the potential to identify distinct student learning profiles and enhance spatial skills. Furthermore, it highlights the potential of 2.5D stimuli as a cost-effective alternative for learning applications in VR. Here, we demonstrated that modeling the same task in 3D and 2.5D conditions can compare how humans interact with visuospatial tests, providing insights into applying VR devices to develop spatial skills.
空间认知在我们的日常生活中起着至关重要的作用。空间能力与数学表现之间的关系已经得到充分证实,视空间训练在学术 STEM(科学、技术、工程和数学)学科中具有显著的益处。发展视空间训练需要客观评估空间认知,并考虑各种 3D 显示。本研究旨在使用虚拟现实 (VR) 比较 STEM 和非 STEM 个体在 3D 和 2.5D 条件(伪 3D)下进行心理旋转任务 (MRT) 的神经效率。为此,我们提出了一种新颖的空间认知综合评估方法,将经济高效的 VR 耳机和功能近红外光谱 (fNIRS) 结合使用。总的来说,研究结果表明,与非 STEM 个体相比,STEM 个体在 VR 环境中解决 MRT 时,背外侧前额叶皮层 (PFC) 的神经效率更高。此外,该研究表明,3D 和 2.5D 刺激之间的性能没有显著差异,这表明两种条件在 VR 中进行 MRT 同样适用。一种可能的解释是,沉浸式 VR 减少了 3D 模型和 2.5D 图像之间的区别,考虑到 MRT 分数和 PFC 活动。这项研究强调了使用 VR 和 fNIRS 评估视空间任务的实用性和相关性,以及识别不同学生学习特征和增强空间技能的潜力。此外,它还强调了 2.5D 刺激作为 VR 学习应用的一种具有成本效益的替代方案的潜力。在这里,我们证明了在 3D 和 2.5D 条件下对相同任务进行建模可以比较人类如何与视空间测试交互,从而深入了解如何应用 VR 设备来开发空间技能。