Suppr超能文献

为提高农业生产水平,采用人工智能模型(LSTM 模型)对灌溉水质指数进行估算和预测的性能研究。

Performance of artificial intelligence model (LSTM model) for estimating and predicting water quality index for irrigation purposes in order to improve agricultural production.

机构信息

Geo-Environment Laboratory, Department of Geology, Faculty of Earth Sciences and Country Planning, University of Sciences and Technology Houari Boumediene (USTHB), 16111, Bab EzzouarAlgiers, Algeria.

GEE Research Laboratory, Ecole Nationale Supérieure d'Hydraulique de Blida, Blida, Algeria.

出版信息

Environ Monit Assess. 2024 Oct 13;196(11):1049. doi: 10.1007/s10661-024-13211-y.

Abstract

The primary goal of this study is to predict the current and future water quality index for irrigation (WQII) of the western Mitidja alluvial aquifer in northern Algeria. The modified WQII was used to evaluate groundwater suitability for irrigation through geographic information system (GIS) techniques. Additionally, a long short-term memory (LSTM) model was employed to calculate the WQII and map future groundwater quality, considering factors like overexploitation, anthropogenic pollution, and climate change. Two scenarios were analyzed for the year 2030. Results from applying the modified WQII model to 2020 data showed that about 83% of the study area has medium to high groundwater suitability for irrigation. The LSTM model exhibited strong predictive accuracy with determination coefficients (R) of 0.992 and 0.987, and root mean square error (RMSE) values of 0.061 and 0.084 for the training and testing phases, respectively. For the first 2030 scenario, the area with low and medium groundwater suitability is expected to increase by 4% and 7% compared to the 2020 map. Conversely, under the second scenario, groundwater quality is predicted to improve, with a decrease of 14% and 11% in the low and medium suitability areas. The combination of the modified WQII and LSTM model proves to be an effective tool for estimating and predicting water quality indices in similar regions globally, offering valuable insights for water resource management and decision-making processes.

摘要

本研究的主要目的是预测阿尔及利亚北部西部米提加冲积含水层的当前和未来灌溉水质指数 (WQII)。通过地理信息系统 (GIS) 技术,使用改良的 WQII 评估地下水对灌溉的适宜性。此外,还采用长短期记忆 (LSTM) 模型考虑过度开采、人为污染和气候变化等因素来计算 WQII 并绘制未来地下水质量图。对 2030 年分析了两种情景。将改良的 WQII 模型应用于 2020 年数据的结果表明,研究区约 83%的地区地下水对灌溉具有中等到高度适宜性。LSTM 模型具有很强的预测精度,训练阶段和测试阶段的决定系数 (R) 分别为 0.992 和 0.987,均方根误差 (RMSE) 值分别为 0.061 和 0.084。对于第一个 2030 年情景,与 2020 年地图相比,低和中等地下水适宜性的区域预计将增加 4%和 7%。相反,在第二个情景下,预计地下水质量将得到改善,低和中等适宜性区域的适宜性分别减少 14%和 11%。改良的 WQII 和 LSTM 模型的组合被证明是估计和预测全球类似地区水质指数的有效工具,为水资源管理和决策过程提供了有价值的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验