Suppr超能文献

使用蒙特卡罗方法预测化学品对黑头呆鱼的水生毒性。

aquatic toxicity prediction of chemicals toward and fathead minnow using Monte Carlo approaches.

作者信息

Lotfi Shahram, Ahmadi Shahin, Azimi Ali, Kumar Parvin

机构信息

Department of Chemistry, Payame Noor University (PNU), Tehran, Iran.

Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.

出版信息

Toxicol Mech Methods. 2025 Mar;35(3):305-317. doi: 10.1080/15376516.2024.2416226. Epub 2024 Oct 29.

Abstract

The fast-increasing use of chemicals led to large numbers of chemical compounds entering the aquatic environment, raising concerns about their potential effects on ecosystems. Therefore, assessment of the ecotoxicological features of organic compounds on aquatic organisms is very important. and are two aquatic species that are commonly tested as standard test organisms for aquatic risk assessment and are typically chosen as the biological model for the ecotoxicology investigations of chemical pollutants. Herein, global quantitative structure-toxicity relationship (QSTR) models have been developed to predict the toxicity (pEC(LC)50) of a large dataset comprising 2106 chemicals toward and . The optimal descriptor of correlation weights (DCWs) is calculated using the notation of simplified molecular input line entry system (SMILES) and is used to construct QSTR models. Three target functions, TF, TF, and TF are utilized to generate 12 QSTR models from four splits, and their statistical characteristics are also compared. The designed QSTR models are validated using both internal and external validation criteria and are found to be reliable, robust, and excellently predictive. Among the models, those generated using the TF demonstrate the best statistical quality with values ranging from 0.9467 to 0.9607, values ranging from 0.9462 to 0.9603 and RMSE values ranging from 0.3764 to 0.4413 for the validation set. The applicability domain and the mechanistic interpretations of generated models were also discussed.

摘要

化学品使用的快速增长导致大量化合物进入水生环境,引发了人们对其对生态系统潜在影响的担忧。因此,评估有机化合物对水生生物的生态毒理学特性非常重要。斑马鱼和大型溞是两种常用于水生风险评估标准测试的水生生物,通常被选作化学污染物生态毒理学研究的生物学模型。在此,已开发出全球定量结构 - 毒性关系(QSTR)模型,以预测包含2106种化学品对斑马鱼和大型溞的毒性(pEC(LC)50)。使用简化分子输入线性条目系统(SMILES)符号计算相关权重的最优描述符(DCWs),并用于构建QSTR模型。利用三个目标函数TF、TF和TF从四个划分中生成12个QSTR模型,并比较它们的统计特征。所设计的QSTR模型使用内部和外部验证标准进行验证,结果表明它们可靠、稳健且具有出色的预测能力。在这些模型中,使用TF生成的模型具有最佳的统计质量,验证集的R值范围为0.9467至0.9607,R2值范围为0.9462至0.9603,RMSE值范围为0.3764至0.4413。还讨论了生成模型的适用域和机理解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验