Bard Jonathan E, Jiang Na, Emerson Jamaal, Bartz Madeleine, Lamb Natalie A, Marzullo Brandon J, Pohlman Alyssa, Boccolucci Amanda, Nowak Norma J, Yergeau Donald A, Crooks Andrew T, Surtees Jennifer A
Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States.
Genomics and Bioinformatics Core, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States.
Front Microbiol. 2024 Sep 27;15:1416580. doi: 10.3389/fmicb.2024.1416580. eCollection 2024.
The COVID-19 pandemic has prompted an unprecedented global effort to understand and mitigate the spread of the SARS-CoV-2 virus. In this study, we present a comprehensive analysis of COVID-19 in Western New York (WNY), integrating individual patient-level genomic sequencing data with a spatially informed agent-based disease Susceptible-Exposed-Infectious-Recovered (SEIR) computational model. The integration of genomic and spatial data enables a multi-faceted exploration of the factors influencing the transmission patterns of COVID-19, including genetic variations in the viral genomes, population density, and movement dynamics in New York State (NYS). Our genomic analyses provide insights into the genetic heterogeneity of SARS-CoV-2 within a single lineage, at region-specific resolutions, while our population analyses provide models for SARS-CoV-2 lineage transmission. Together, our findings shed light on localized dynamics of the pandemic, revealing potential cross-county transmission networks. This interdisciplinary approach, bridging genomics and spatial modeling, contributes to a more comprehensive understanding of COVID-19 dynamics. The results of this study have implications for future public health strategies, including guiding targeted interventions and resource allocations to control the spread of similar viruses.
新冠疫情促使全球展开了前所未有的努力,以了解和缓解严重急性呼吸综合征冠状病毒2(SARS-CoV-2)病毒的传播。在本研究中,我们对纽约西部(WNY)的新冠疫情进行了全面分析,将个体患者层面的基因组测序数据与基于空间信息的、基于主体的疾病易感-暴露-感染-康复(SEIR)计算模型相结合。基因组数据与空间数据的整合能够从多个方面探索影响新冠病毒传播模式的因素,包括病毒基因组的遗传变异、人口密度以及纽约州(NYS)的人口流动动态。我们的基因组分析在区域特定分辨率下,揭示了单个谱系内SARS-CoV-2的遗传异质性,而我们的人群分析则为SARS-CoV-2谱系传播提供了模型。总之,我们的研究结果揭示了疫情的局部动态,发现了潜在的跨县传播网络。这种跨学科方法,将基因组学与空间建模相结合,有助于更全面地理解新冠疫情动态。本研究结果对未来公共卫生策略具有启示意义,包括指导有针对性的干预措施和资源分配,以控制类似病毒的传播。