Suppr超能文献

评估非周期性和周期性神经活动作为言语感知中听觉努力指标的情况。

Evaluating aperiodic and periodic neural activity as markers of listening effort in speech perception.

作者信息

Woods Sarah J, Silcox Jack W, Payne Brennan R

机构信息

Department of Psychology, University of Utah.

Department of Communication Sciences and Disorders, University of Utah.

出版信息

Audit Percept Cogn. 2024;7(3):203-218. doi: 10.1080/25742442.2024.2395217. Epub 2024 Sep 2.

Abstract

Listening effort (LE) is critical to understanding speech perception in acoustically challenging environments. EEG alpha power has emerged as a potential neural correlate of LE. However, the magnitude and direction of the relationship between acoustic challenge and alpha power has been inconsistent in the literature. In the current study, a secondary data analysis of Silcox and Payne (2021), we examine the broadband 1/f-like exponent and offset of the EEG power spectrum as measures of aperiodic neural activity during effortful speech perception and the influence of this aperiodic activity on reliable estimation of periodic (i.e., alpha) neural activity. EEG was continuously recorded during sentence listening and the broadband (1-40 Hz) EEG power spectrum was computed for each participant for quiet and noise trials separately. Using the specparam algorithm, we decomposed the power spectrum into both aperiodic and periodic components and found that broadband aperiodic activity was sensitive to background noise during speech perception and additionally impacted the measurement of noise-induced changes on alpha oscillations. We discuss the implications of these results for the LE and neural speech processing literatures.

摘要

听努力(LE)对于在声学挑战性环境中理解言语感知至关重要。脑电图阿尔法功率已成为LE的一种潜在神经关联指标。然而,声学挑战与阿尔法功率之间关系的大小和方向在文献中并不一致。在当前对Silcox和Payne(2021年)的二次数据分析研究中,我们将脑电图功率谱的宽带1/f样指数和偏移作为努力言语感知期间非周期性神经活动的指标进行研究,并探讨这种非周期性活动对周期性(即阿尔法)神经活动可靠估计的影响。在句子聆听过程中持续记录脑电图,并分别为每位参与者计算安静和噪声试验下的宽带(1 - 40赫兹)脑电图功率谱。使用specparam算法,我们将功率谱分解为非周期性和周期性成分,发现宽带非周期性活动在言语感知过程中对背景噪声敏感,并且还会影响噪声诱发的阿尔法振荡变化的测量。我们讨论了这些结果对LE和神经言语处理文献的意义。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验