利用机器学习(2009 - 2018年美国国家健康与营养检查调查)建立甘油三酯血糖指数与抑郁症之间U型关系的预测模型。
Development of a predictive model for the U-shaped relationship between the triglyceride glycemic index and depression using machine learning (NHANES 2009-2018).
作者信息
Ding Chao, Kong Zhiyu, Cheng Jiwei, Huang Rong
机构信息
Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
South China University of Technology, Guangzhou, China.
出版信息
Heliyon. 2024 Sep 28;10(19):e38615. doi: 10.1016/j.heliyon.2024.e38615. eCollection 2024 Oct 15.
BACKGROUND
At present, the relationship between depression and the triglyceride glycemic (TyG) index remains a topic of debate. This study sought to elucidate the relationship between depression and the TyG index to create a predictive model that would help doctors diagnose patients.
METHODS
We conducted a cross-sectional study utilizing the National Health and Nutrition Examination Survey (NHANES) dataset, which comprises data from 2009 to 2018. The analysis involved 11,222 adults with a Patient Health Questionnaire-9 (PHQ-9) score of 5 or higher, indicating the presence of depression. As part of the analysis, multiple regression models were used to test whether a linear relationship existed between the TyG index and depression. A threshold effects analysis was used to generate smoothed curves and detect nonlinear correlations. Additionally, the Least Absolute Shrinkage and Selection Operator (LASSO) regression were employed to identify the key risk factors associated with depression. The factors identified were then used to construct the risk prediction nomogram. Finally, Receiver Operating Characteristic (ROC) curves were used to evaluate the discriminative performance of the model.
RESULTS
Multivariable linear regression analysis indicated a strong positive correlation between depression and the TyG index (β: 0.38, 95 % CI: 0.16-0.60, = 0.0008). A U-shaped relationship with an inflection point was observed at a TyG index of 8.16. The nomogram model, constructed using risk factors identified by LASSO, exhibited a significant predictive value (AUC = 0.888).
CONCLUSIONS
The results of this investigation point to a U-shaped association between depression risk and the TyG index among Americans. Those with a TyG index of over 8.16 are significantly more likely to develop depression. These results suggest a possible causal relationship and emphasize the importance of monitoring the TyG index in depression risk assessment.
背景
目前,抑郁症与甘油三酯血糖(TyG)指数之间的关系仍是一个争论的话题。本研究旨在阐明抑郁症与TyG指数之间的关系,以创建一个有助于医生诊断患者的预测模型。
方法
我们利用国家健康与营养检查调查(NHANES)数据集进行了一项横断面研究,该数据集包含2009年至2018年的数据。分析涉及11222名患者健康问卷-9(PHQ-9)得分在5分或更高的成年人,这表明存在抑郁症。作为分析的一部分,使用多元回归模型来检验TyG指数与抑郁症之间是否存在线性关系。采用阈值效应分析来生成平滑曲线并检测非线性相关性。此外,使用最小绝对收缩和选择算子(LASSO)回归来确定与抑郁症相关的关键风险因素。然后使用确定的因素构建风险预测列线图。最后,使用受试者工作特征(ROC)曲线来评估模型的判别性能。
结果
多变量线性回归分析表明抑郁症与TyG指数之间存在强正相关(β:0.38,95%CI:0.16 - 0.60,P = 0.0008)。在TyG指数为8.16时观察到具有拐点的U形关系。使用LASSO确定的风险因素构建的列线图模型具有显著的预测价值(AUC = 0.888)。
结论
这项调查的结果表明,美国人群中抑郁症风险与TyG指数之间存在U形关联。TyG指数超过8.16的人患抑郁症的可能性显著更高。这些结果表明可能存在因果关系,并强调在抑郁症风险评估中监测TyG指数的重要性。