Hou Benjamin, Lee Sung-Won, Lee Jung-Min, Koh Christopher, Xiao Jing, Pickhardt Perry J, Summers Ronald M
Radiology and Imaging Sciences, Clinical Center - National Institutes of Health, Bethesda, MD, USA.
The Catholic University of Korea, Seoul St. Mary's Hospital.
ArXiv. 2024 Jun 23:arXiv:2406.15979v1.
To evaluate the performance of an automated deep learning method in detecting ascites and subsequently quantifying its volume in patients with liver cirrhosis and ovarian cancer.
This retrospective study included contrast-enhanced and non-contrast abdominal-pelvic CT scans of patients with cirrhotic ascites and patients with ovarian cancer from two institutions, National Institutes of Health (NIH) and University of Wisconsin (UofW). The model, trained on The Cancer Genome Atlas Ovarian Cancer dataset (mean age, 60 years ± 11 [s.d.]; 143 female), was tested on two internal (NIH-LC and NIH-OV) and one external dataset (UofW-LC). Its performance was measured by the Dice coefficient, standard deviations, and 95% confidence intervals, focusing on ascites volume in the peritoneal cavity.
On NIH-LC (25 patients; mean age, 59 years ± 14 [s.d.]; 14 male) and NIH-OV (166 patients; mean age, 65 years ± 9 [s.d.]; all female), the model achieved Dice scores of 0.855±0.061 (CI: 0.831-0.878) and 0.826±0.153 (CI: 0.764-0.887), with median volume estimation errors of 19.6% (IQR: 13.2-29.0) and 5.3% (IQR: 2.4-9.7) respectively. On UofW-LC (124 patients; mean age, 46 years ± 12 [s.d.]; 73 female), the model had a Dice score of 0.830±0.107 (CI: 0.798-0.863) and median volume estimation error of 9.7% (IQR: 4.5-15.1). The model showed strong agreement with expert assessments, with values of 0.79, 0.98, and 0.97 across the test sets.
The proposed deep learning method performed well in segmenting and quantifying the volume of ascites in concordance with expert radiologist assessments.
评估一种自动化深度学习方法在检测肝硬化和卵巢癌患者腹水中的性能,并随后对腹水体积进行量化。
这项回顾性研究纳入了来自美国国立卫生研究院(NIH)和威斯康星大学(UofW)两个机构的肝硬化腹水患者和卵巢癌患者的增强和非增强腹部盆腔CT扫描。该模型在癌症基因组图谱卵巢癌数据集(平均年龄,60岁±11[标准差];143名女性)上进行训练,并在两个内部数据集(NIH-LC和NIH-OV)和一个外部数据集(UofW-LC)上进行测试。通过Dice系数、标准差和95%置信区间来衡量其性能,重点关注腹腔内的腹水体积。
在NIH-LC(25例患者;平均年龄,59岁±14[标准差];14名男性)和NIH-OV(166例患者;平均年龄,65岁±9[标准差];均为女性)中,该模型的Dice评分为0.855±0.061(CI:0.831-0.878)和0.826±0.153(CI:0.764-0.887),中位体积估计误差分别为19.6%(IQR:13.2-29.0)和5.3%(IQR:2.4-9.7)。在UofW-LC(124例患者;平均年龄,46岁±12[标准差];73名女性)中,该模型的Dice评分为0.830±0.107(CI:0.798-0.863),中位体积估计误差为9.7%(IQR:4.5-15.1)。该模型与专家评估显示出高度一致性,在各个测试集中的κ值分别为0.79、0.98和0.97。
所提出的深度学习方法在分割和量化腹水体积方面表现良好,与放射科专家的评估结果一致。