Cabini Raffaella Fiamma, Cozzi Andrea, Leu Svenja, Thelen Benedikt, Krause Rolf, Del Grande Filippo, Pizzagalli Diego Ulisse, Rizzo Stefania Maria Rita
Euler Institute, Università della Svizzera italiana, Lugano, Switzerland.
International Center of Advanced Computing in Medicine (ICAM), Pavia, Italy.
Eur Radiol Exp. 2025 Jan 29;9(1):12. doi: 10.1186/s41747-025-00552-7.
Body composition scores allow for quantifying the volume and physical properties of specific tissues. However, their manual calculation is time-consuming and prone to human error. This study aims to develop and validate CompositIA, an automated, open-source pipeline for quantifying body composition scores from thoraco-abdominal computed tomography (CT) scans.
A retrospective dataset of 205 contrast-enhanced thoraco-abdominal CT examinations was used for training, while 54 scans from a publicly available dataset were used for independent testing. Two radiology residents performed manual segmentation, identifying the centers of the L1 and L3 vertebrae and segmenting the corresponding axial slices. MultiResUNet was used to identify CT slices intersecting the L1 and L3 vertebrae, and its performance was evaluated using the mean absolute error (MAE). Two U-nets were used to segment the axial slices, with performance evaluated through the volumetric Dice similarity coefficient (vDSC). CompositIA's performance in quantifying body composition indices was assessed using mean percentage relative error (PRE), regression, and Bland-Altman analyses.
On the independent dataset, CompositIA achieved a MAE of about 5 mm in detecting slices intersecting the L1 and L3 vertebrae, with a MAE < 10 mm in at least 85% of cases and a vDSC greater than 0.85 in segmenting axial slices. Regression and Bland-Altman analyses demonstrated a strong linear relationship and good agreement between automated and manual scores (p values < 0.001 for all indices), with mean PREs ranging from 5.13% to 15.18%.
CompositIA facilitated the automated quantification of body composition scores, achieving high precision in independent testing.
CompositIA is an automated, open-source pipeline for quantifying body composition indices from CT scans, simplifying clinical assessments, and expanding their applicability.
Manual body composition assessment from CTs is time-consuming and prone to errors. CompositIA was trained on 205 CT scans and tested on 54 scans. CompositIA demonstrated mean percentage relative errors under 15% compared to manual indices. CompositIA simplifies body composition assessment through an artificial intelligence-driven and open-source pipeline.
身体成分评分可用于量化特定组织的体积和物理特性。然而,手动计算耗时且容易出现人为误差。本研究旨在开发并验证CompositIA,这是一种用于从胸腹部计算机断层扫描(CT)图像中量化身体成分评分的自动化开源流程。
使用包含205例对比增强胸腹部CT检查的回顾性数据集进行训练,同时使用公开数据集中的54次扫描进行独立测试。两名放射科住院医师进行手动分割,确定L1和L3椎体的中心并分割相应的轴向切片。使用MultiResUNet识别与L1和L3椎体相交的CT切片,并使用平均绝对误差(MAE)评估其性能。使用两个U-net分割轴向切片,并通过体积骰子相似系数(vDSC)评估性能。使用平均相对误差百分比(PRE)、回归分析和布兰德-奥特曼分析评估CompositIA在量化身体成分指数方面的性能。
在独立数据集中,CompositIA在检测与L1和L3椎体相交的切片时,MAE约为5毫米,至少85%的病例MAE < 10毫米,在分割轴向切片时vDSC大于0.85。回归分析和布兰德-奥特曼分析表明,自动评分和手动评分之间存在很强的线性关系和良好的一致性(所有指数的p值<0.001),平均PRE范围为5.13%至15.18%。
CompositIA有助于自动量化身体成分评分,在独立测试中实现了高精度。
CompositIA是一种用于从CT扫描中量化身体成分指数的自动化开源流程,简化了临床评估并扩大了其适用性。
通过CT进行手动身体成分评估既耗时又容易出错。CompositIA在205次CT扫描上进行训练,并在54次扫描上进行测试。与手动指数相比,CompositIA的平均相对误差百分比低于15%。CompositIA通过人工智能驱动的开源流程简化了身体成分评估。