文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用深度学习对肾上腺增生进行分类的 CT 肾上腺全自动容积测量。

Fully automatic volume measurement of the adrenal gland on CT using deep learning to classify adrenal hyperplasia.

机构信息

Department of Radiology, Seoul National University Hospital, Seoul, Korea.

Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.

出版信息

Eur Radiol. 2023 Jun;33(6):4292-4302. doi: 10.1007/s00330-022-09347-5. Epub 2022 Dec 26.


DOI:10.1007/s00330-022-09347-5
PMID:36571602
Abstract

OBJECTIVES: To develop a fully automated deep learning model for adrenal segmentation and to evaluate its performance in classifying adrenal hyperplasia. METHODS: This retrospective study evaluated automated adrenal segmentation in 308 abdominal CT scans from 48 patients with adrenal hyperplasia and 260 patients with normal glands from 2010 to 2021 (mean age, 42 years; 156 women). The dataset was split into training, validation, and test sets at a ratio of 6:2:2. Contrast-enhanced CT images and manually drawn adrenal gland masks were used to develop a U-Net-based segmentation model. Predicted adrenal volumes were obtained by fivefold splitting of the dataset without overlapping the test set. Adrenal volumes and anthropometric parameters (height, weight, and sex) were utilized to develop an algorithm to classify adrenal hyperplasia, using multilayer perceptron, support vector classification, a random forest classifier, and a decision tree classifier. To measure the performance of the developed model, the dice coefficient and intraclass correlation coefficient (ICC) were used for segmentation, and area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity were used for classification. RESULTS: The model for segmenting adrenal glands achieved a Dice coefficient of 0.7009 for 308 cases and an ICC of 0.91 (95% CI, 0.90-0.93) for adrenal volume. The models for classifying hyperplasia had the following results: AUC, 0.98-0.99; accuracy, 0.948-0.961; sensitivity, 0.750-0.813; and specificity, 0.973-1.000. CONCLUSION: The proposed segmentation algorithm can accurately segment the adrenal glands on CT scans and may help clinicians identify possible cases of adrenal hyperplasia. KEY POINTS: • A deep learning segmentation method can accurately segment the adrenal gland, which is a small organ, on CT scans. • The machine learning algorithm to classify adrenal hyperplasia using adrenal volume and anthropometric parameters (height, weight, and sex) showed good performance. • The proposed segmentation algorithm may help clinicians identify possible cases of adrenal hyperplasia.

摘要

目的:开发一种完全自动化的深度学习模型,用于肾上腺分割,并评估其在肾上腺增生分类中的性能。

方法:这项回顾性研究评估了 2010 年至 2021 年间 48 例肾上腺增生患者和 260 例正常腺体患者的 308 例腹部 CT 扫描的自动肾上腺分割。数据集按 6:2:2 的比例分为训练集、验证集和测试集。使用增强 CT 图像和手动绘制的肾上腺掩模来开发基于 U-Net 的分割模型。通过不重叠测试集的数据集五折分割来获得预测的肾上腺体积。使用多层感知器、支持向量分类、随机森林分类器和决策树分类器,利用肾上腺体积和人体测量参数(身高、体重和性别)来开发一种分类肾上腺增生的算法。为了衡量开发模型的性能,使用 Dice 系数和组内相关系数(ICC)进行分割,使用接收者操作特征曲线下的面积(AUC)、准确性、敏感性和特异性进行分类。

结果:该模型对 308 例病例的肾上腺分割获得了 0.7009 的 Dice 系数和 0.91(95%CI,0.90-0.93)的 ICC。用于分类增生的模型结果如下:AUC,0.98-0.99;准确性,0.948-0.961;敏感性,0.750-0.813;特异性,0.973-1.000。

结论:提出的分割算法可以准确地对 CT 扫描上的肾上腺进行分割,这有助于临床医生识别可能的肾上腺增生病例。

要点:

  • 一种深度学习分割方法可以准确地分割 CT 扫描上的小器官肾上腺。
  • 使用肾上腺体积和人体测量参数(身高、体重和性别)的肾上腺增生分类机器学习算法表现良好。
  • 提出的分割算法可能有助于临床医生识别可能的肾上腺增生病例。

相似文献

[1]
Fully automatic volume measurement of the adrenal gland on CT using deep learning to classify adrenal hyperplasia.

Eur Radiol. 2023-6

[2]
Machine Learning for Adrenal Gland Segmentation and Classification of Normal and Adrenal Masses at CT.

Radiology. 2023-2

[3]
Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset.

Med Phys. 2021-5

[4]
AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.

Med Phys. 2018-12-17

[5]
Automated segmentation of whole-body CT images for body composition analysis in pediatric patients using a deep neural network.

Eur Radiol. 2022-12

[6]
Segmentation-based quantitative measurements in renal CT imaging using deep learning.

Eur Radiol Exp. 2024-10-9

[7]
From community-acquired pneumonia to COVID-19: a deep learning-based method for quantitative analysis of COVID-19 on thick-section CT scans.

Eur Radiol. 2020-7-18

[8]
Automatic coronary artery segmentation and diagnosis of stenosis by deep learning based on computed tomographic coronary angiography.

Eur Radiol. 2022-9

[9]
nnU-Net-Based Pancreas Segmentation and Volume Measurement on CT Imaging in Patients with Pancreatic Cancer.

Acad Radiol. 2024-7

[10]
Performance of a Deep Learning Algorithm for Automated Segmentation and Quantification of Traumatic Pelvic Hematomas on CT.

J Digit Imaging. 2020-2

引用本文的文献

[1]
Multi-model radiomics and machine learning for differentiating lipid-poor adrenal adenomas from metastases using automatic segmentation.

Front Oncol. 2025-7-18

[2]
Artificial intelligence (AI) and CT in abdominal imaging: image reconstruction and beyond.

Abdom Radiol (NY). 2025-6-16

[3]
A deep learning algorithm for automated adrenal gland segmentation on non-contrast CT images.

BMC Med Imaging. 2025-5-1

[4]
Localization and Classification of Adrenal Masses in Multiphase Computed Tomography: Retrospective Study.

J Med Internet Res. 2025-4-24

[5]
Unveiling the Future: A Deep Learning Model for Accurate Detection of Adrenal Nodules.

Radiology. 2025-3

[6]
Characterization of adrenal glands on computed tomography with a 3D V-Net-based model.

Insights Imaging. 2025-1-14

[7]
Integrating CT-based radiomics and clinical features to better predict the prognosis of acute pancreatitis.

Insights Imaging. 2025-1-9

[8]
Intra-Individual Reproducibility of Automated Abdominal Organ Segmentation-Performance of TotalSegmentator Compared to Human Readers and an Independent nnU-Net Model.

J Imaging Inform Med. 2025-6

[9]
Adrenal Volume Quantitative Visualization Tool by Multiple Parameters and an nnU-Net Deep Learning Automatic Segmentation Model.

J Imaging Inform Med. 2025-2

[10]
Deep learning vs. robust federal learning for distinguishing adrenal metastases from benign lesions with multi-phase CT images.

Heliyon. 2024-2-6

本文引用的文献

[1]
An optimized two-stage cascaded deep neural network for adrenal segmentation on CT images.

Comput Biol Med. 2021-9

[2]
Fully Automatic Volume Measurement of the Spleen at CT Using Deep Learning.

Radiol Artif Intell. 2020-7-22

[3]
Volumetric evaluation of CT images of adrenal glands in primary aldosteronism.

J Endocrinol Invest. 2021-11

[4]
Abdominal multi-organ auto-segmentation using 3D-patch-based deep convolutional neural network.

Sci Rep. 2020-4-10

[5]
SciPy 1.0: fundamental algorithms for scientific computing in Python.

Nat Methods. 2020-2-3

[6]
Adrenocortical hyperplasia: a review of clinical presentation and imaging.

Abdom Radiol (NY). 2020-4

[7]
Automatic Multi-Organ Segmentation on Abdominal CT With Dense V-Networks.

IEEE Trans Med Imaging. 2018-2-14

[8]
11-Oxygenated Androgens Are Biomarkers of Adrenal Volume and Testicular Adrenal Rest Tumors in 21-Hydroxylase Deficiency.

J Clin Endocrinol Metab. 2017-8-1

[9]
Use of 3-Dimensional Volumetric Modeling of Adrenal Gland Size in Patients with Primary Pigmented Nodular Adrenocortical Disease.

Horm Metab Res. 2016-4

[10]
Differentiation of Adrenal Hyperplasia From Adenoma by Use of CT Densitometry and Percentage Washout.

AJR Am J Roentgenol. 2016-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索