Suppr超能文献

一种利用常规可用数据在野火条件下快速估算颗粒物暴露的模型:快速火灾v0.1.3

A model for rapid PM exposure estimates in wildfire conditions using routinely available data: rapidfire v0.1.3.

作者信息

Raffuse Sean, O'Neill Susan, Schmidt Rebecca

机构信息

Air Quality Research Center, University of California, Davis, Davis, CA, United States.

Pacific Northwest Research Station, USDA Forest Service, Seattle, WA, United States.

出版信息

Geosci Model Dev. 2024;17(1):381-397. doi: 10.5194/gmd-17-381-2024. Epub 2024 Jan 16.

Abstract

Urban smoke exposure events from large wildfires have become increasingly common in California and throughout the western United States. The ability to study the impacts of high smoke aerosol exposures from these events on the public is limited by the availability of high-quality, spatially resolved estimates of aerosol concentrations. Methods for assigning aerosol exposure often employ multiple data sets that are time-consuming to create and difficult to reproduce. As these events have gone from occasional to nearly annual in frequency, the need for rapid smoke exposure assessments has increased. The rapidfire (relatively accurate particulate information derived from inputs retrieved easily) R package (version 0.1.3) provides a suite of tools for developing exposure assignments using data sets that are routinely generated and publicly available within a month of the event. Specifically, rapidfire harvests official air quality monitoring, satellite observations, meteorological modeling, operational predictive smoke modeling, and low-cost sensor networks. A machine learning approach, random forest (RF) regression, is used to fuse the different data sets. Using rapidfire, we produced estimates of ground-level 24 h average particulate matter for several large wildfire smoke events in California from 2017-2021. These estimates show excellent agreement with independent measures from filter-based networks.

摘要

在加利福尼亚州以及美国西部各地,因大型野火导致的城市烟雾暴露事件越来越常见。由于缺乏高质量、空间分辨率高的气溶胶浓度估计数据,研究这些事件中高烟雾气溶胶暴露对公众影响的能力受到限制。确定气溶胶暴露的方法通常采用多个数据集,这些数据集创建耗时且难以重现。随着这些事件的发生频率从偶尔变为几乎每年一次,对快速烟雾暴露评估的需求也在增加。Rapidfire(从轻松获取的输入数据中得出的相对准确的颗粒物信息)R包(版本0.1.3)提供了一套工具,可利用事件发生后一个月内常规生成且公开可用的数据集来制定暴露评估。具体而言,Rapidfire整合了官方空气质量监测、卫星观测、气象建模、业务预测烟雾建模和低成本传感器网络。一种机器学习方法——随机森林(RF)回归,用于融合不同的数据集。利用Rapidfire,我们对2017年至2021年加利福尼亚州几次大型野火烟雾事件的地面24小时平均颗粒物进行了估计。这些估计结果与基于过滤器网络的独立测量结果高度吻合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f08/11469206/84dff36623bc/nihms-1982722-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验