Suppr超能文献

历史烟雾预测的公共卫生应用:对2015 - 2018年美国本土存档的蓝天数据的评估

Public health applications of historical smoke forecasts: An evaluation of archived BlueSky data for the coterminous United States, 2015-2018.

作者信息

Michael Ryan, Mirabelli Maria C, Vaidyanathan Ambarish

机构信息

Oak Ridge Institute for Science and Education, P.O. Box 117, Oak Ridge, TN, 37831-0117, USA.

Climate and Health Program, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway NE, Mailstop S106-6, Atlanta, GA, 30341, USA.

出版信息

Comput Geosci. 2023;171. doi: 10.1016/j.cageo.2022.105267.

Abstract

BACKGROUND

Wildfires are increasing in magnitude, frequency, and severity. Populations in the wildland-urban interface and in downwind communities are at increased risk of exposure to elevated concentrations of fine particulate matter (PM) and other harmful components of wildfire smoke. We conducted this analysis to evaluate the use of modeled predictions of wildfire smoke to create county-level measures of smoke exposure for public health research and surveillance.

METHODS

We evaluated four years (2015-2018) of grid-based North American Mesoscale (NAM)-derived PM forecasts from the U.S. Forest Service BlueSky modeling framework with monitoring data from the Environmental Protection Agency Air Quality System (AQS), the Interagency Monitoring of Protected Visual Environments (IMPROVE), the Western Regional Climate Center (WRCC), and the Interagency Real Time Smoke Monitoring (AIRSIS) programs. To assess relationships between model-derived estimates and monitor-based observations, we assessed Spearman's correlations by spatial (i.e., county, level of urbanization, states in the western United States impacted by major wildfires, and climate regions) and temporal (i.e., month and wildfire activity periods) characteristics. We then generated county-level smoke estimates and examined spatial and temporal patterns in total and person-days of smoke exposure.

RESULTS

Across all counties in the coterminous United States and for all days, the correlation between county-level model- and monitor-derived PM estimates was 0.14 (p < 0.001). Correlations were stronger using data from temporary monitors and for areas and days impacted by high wildfire smoke, especially in the western United States. Correlations between county-level model- and monitor-derived estimates in non-metropolitan counties, and at higher concentrations ranged from 0.25 to 0.54 (p < 0.001).

CONCLUSIONS

In general, public health practitioners and health researchers need to consider the pros and cons associated with modeled data products for conducting health analyses. Our results support the use of model-derived smoke estimates to identify communities impacted by heavy smoke events, especially during emergency response and for communities located near wildfire episodes.

摘要

背景

野火的规模、频率和强度正在增加。处于城乡交错带和下风向社区的人群暴露于高浓度细颗粒物(PM)及野火烟雾中其他有害成分的风险在上升。我们开展此项分析以评估利用野火烟雾的模型预测结果来创建县级烟雾暴露指标,用于公共卫生研究和监测。

方法

我们用美国林业局蓝天建模框架中基于网格的北美中尺度(NAM)得出的四年(2015 - 2018年)PM预测数据,与来自环境保护局空气质量系统(AQS)、受保护视觉环境跨部门监测(IMPROVE)、西部区域气候中心(WRCC)以及跨部门实时烟雾监测(AIRSIS)项目的监测数据进行评估。为评估模型得出的估计值与基于监测的观测值之间的关系,我们按空间(即县、城市化水平、受重大野火影响的美国西部各州以及气候区域)和时间(即月份和野火活动期)特征评估斯皮尔曼相关性。然后我们生成县级烟雾估计值,并研究烟雾暴露总量和人天数的时空模式。

结果

在美国本土所有县以及所有日子里,县级模型得出的和监测得出的PM估计值之间的相关性为0.14(p < 0.001)。使用临时监测器的数据以及受高浓度野火烟雾影响的区域和日子,相关性更强,尤其是在美国西部。非都市县以及较高浓度下县级模型得出的和监测得出的估计值之间的相关性在0.25至0.54之间(p < 0.001)。

结论

总体而言,公共卫生从业者和健康研究人员在进行健康分析时需要考虑与模型数据产品相关的利弊。我们的结果支持利用模型得出的烟雾估计值来识别受浓烟事件影响的社区,尤其是在应急响应期间以及靠近野火事件的社区。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a04/11296727/07d745f5997a/nihms-2012331-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验