Lu Fengqi, Chen Qiang, Geng Shipeng, Allix Mathieu, Wu Hui, Huang Qingzhen, Kuang Xiaojun
MOE Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, Guangxi Universities Key Laboratory of Nonferrous Metal Oxide Electronic Functional Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
UPR3079 CEMHTI, 1D Avenue de la Recherche Scientifique, 45071 Orléans Cedex 2, France.
J Mater Chem A Mater. 2018 Oct;6(47). doi: 10.1039/C8TA07605G.
The soft-chemistry synthetic routes of anatase phases for energy conversion and storage usually employ expensive and air-sensitive amorphous alkoxides, which hardly access the electrochemically active cationic vacancy defects in the cationic donor-substituted anatase compositions. Here we demonstrate an innovative way of using layered KTiNbO as a cost-effectively crystalline precursor to synthesize cation-deficient Nb-doped TiO (NTO, formulated as TiNb□O) anatase by a one-pot hydrothermal route. When used as an anode in lithium ion batteries, the NTO electrode displayed initial discharge and charge capacities of 618 and 384.6 mA h g at a current density of 0.2C respectively, with a remarkable discharge capacity of ~246.8 mA h g retained after 100 cycles, representing the highest value among those reported for Nb-doped TiO anatases at low current density. A discharge capacity of 137.1 mA h g was obtained even at a high current density of 2C. A full cell, fabricated using the NTO electrode as the anode and a commercial LiCoO cathode, is shown to deliver a discharge capacity of 220.2 mA h g after 57 cycles, which exceeds those of most previously reported full cells based on the TiO anode and makes this NTO material a promising anode candidate for LIBs. These results present a practical synthetic strategy for tuning cationic vacancies through aliovalent cationic substitution to improve the electrochemical performance of actual LIBs and possibly to develop further relevant devices.
用于能量转换和存储的锐钛矿相的软化学合成路线通常采用昂贵且对空气敏感的无定形醇盐,而这些醇盐很难在阳离子供体取代的锐钛矿组合物中形成具有电化学活性的阳离子空位缺陷。在此,我们展示了一种创新方法,即使用层状KTiNbO作为具有成本效益的晶体前驱体,通过一锅水热法合成阳离子缺陷的Nb掺杂TiO(NTO,化学式为TiNb□O)锐钛矿。当用作锂离子电池的阳极时,NTO电极在0.2C的电流密度下分别显示出初始放电和充电容量为618和384.6 mA h g,在100次循环后仍保留了约246.8 mA h g的显著放电容量,这是低电流密度下报道的Nb掺杂TiO锐钛矿中最高的值。即使在2C的高电流密度下也获得了137.1 mA h g的放电容量。使用NTO电极作为阳极和商用LiCoO阴极制造的全电池,在57次循环后显示出220.2 mA h g的放电容量,超过了大多数先前报道的基于TiO阳极的全电池,使这种NTO材料成为LIBs有前景的阳极候选材料。这些结果提出了一种实用的合成策略,即通过异价阳离子取代来调节阳离子空位,以改善实际LIBs的电化学性能,并可能进一步开发相关器件。