Moitzheim S, Nimisha C S, Deng Shaoren, Cott Daire J, Detavernier C, Vereecken P M
Imec, Kapeldreef 75, B-3001 Leuven, Belgium.
Nanotechnology. 2014 Dec 19;25(50):504008. doi: 10.1088/0957-4484/25/50/504008.
Heterogeneous nanostructured electrodes using carbon nanosheets (CNS) and TiO2 exhibit high electronic and ionic conductivity. In order to realize the chip level power sources, it is necessary to employ microelectronic compatible techniques for the fabrication and characterization of TiO2-CNS thin-film electrodes. To achieve this, vertically standing CNS grown through a catalytic free approach on a TiN/SiO2/Si substrate by plasma enhanced chemical vapour deposition (PECVD) was used. The substrate-attached CNS is responsible for the sufficient electronic conduction and increased surface-to-volume ratio due to its unique morphology. Atomic layer deposition (ALD) of nanostructured amorphous TiO2 on CNS provides enhanced Li storage capacity, high rate performance and stable cycling. The amount of deposited TiO2 masks the underlying CNS, thereby controlling the accessibility of CNS, which gets reflected in the total electrochemical performance, as revealed by the cyclic voltammetry and charge/discharge measurements. TiO2 thin-films deposited with 300, 400 and 500 ALD cycles on CNS have been studied to understand the kinetics of Li insertion/extraction. A large potential window of operation (3-0.01 V); the excellent cyclic stability, with a capacity retention of 98% of the initial value; and the remarkable rate capability (up to 100 C) are the highlights of TiO2/CNS thin-film anode structures. CNS with an optimum amount of TiO2 coating is proposed as a promising approach for the fabrication of electrodes for chip compatible thin-film Li-ion batteries.
使用碳纳米片(CNS)和TiO₂的异质纳米结构电极具有高电子和离子导电性。为了实现芯片级电源,有必要采用微电子兼容技术来制备和表征TiO₂-CNS薄膜电极。为此,使用了通过等离子体增强化学气相沉积(PECVD)在TiN/SiO₂/Si衬底上通过无催化方法生长的垂直站立的CNS。附着在衬底上的CNS由于其独特的形态,负责足够的电子传导并增加表面积与体积比。在CNS上进行纳米结构非晶TiO₂的原子层沉积(ALD)可提高锂存储容量、高倍率性能和稳定的循环性能。沉积的TiO₂量掩盖了下面的CNS,从而控制了CNS的可及性,这在循环伏安法和充放电测量中揭示的总电化学性能中得到体现。研究了在CNS上沉积300、400和500个ALD循环的TiO₂薄膜,以了解锂嵌入/脱出的动力学。大的工作电位窗口(3 - 0.01 V);优异的循环稳定性,容量保持率为初始值的98%;以及显著的倍率性能(高达100 C)是TiO₂/CNS薄膜阳极结构的亮点。提出具有最佳TiO₂涂层量的CNS作为制造芯片兼容薄膜锂离子电池电极的一种有前途的方法。