Koketsu Toshinari, Ma Jiwei, Morgan Benjamin J, Body Monique, Legein Christophe, Dachraoui Walid, Giannini Mattia, Demortière Arnaud, Salanne Mathieu, Dardoize François, Groult Henri, Borkiewicz Olaf J, Chapman Karena W, Strasser Peter, Dambournet Damien
The Electrochemical Energy, Catalysis, and Materials Science Laboratory, Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623 Berlin, Germany.
Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 8234, Laboratoire PHENIX, 4 place Jussieu, F-75005 Paris, France.
Nat Mater. 2017 Nov;16(11):1142-1148. doi: 10.1038/nmat4976. Epub 2017 Sep 18.
In contrast to monovalent lithium or sodium ions, the reversible insertion of multivalent ions such as Mg and Al into electrode materials remains an elusive goal. Here, we demonstrate a new strategy to achieve reversible Mg and Al insertion in anatase TiO, achieved through aliovalent doping, to introduce a large number of titanium vacancies that act as intercalation sites. We present a broad range of experimental and theoretical characterizations that show a preferential insertion of multivalent ions into titanium vacancies, allowing a much greater capacity to be obtained compared to pure TiO. This result highlights the possibility to use the chemistry of defects to unlock the electrochemical activity of known materials, providing a new strategy for the chemical design of materials for practical multivalent batteries.
与单价锂离子或钠离子不同,镁和铝等多价离子可逆嵌入电极材料仍是一个难以实现的目标。在此,我们展示了一种新策略,通过等价掺杂在锐钛矿TiO₂中实现镁和铝的可逆嵌入,引入大量作为嵌入位点的钛空位。我们展示了广泛的实验和理论表征,表明多价离子优先嵌入钛空位,与纯TiO₂相比可获得更大的容量。这一结果凸显了利用缺陷化学来开启已知材料电化学活性的可能性,为实用多价电池材料的化学设计提供了新策略。