Suppr超能文献

组织学引导的对意识至关重要的脑干核团的磁共振成像分割

Histology-guided MRI segmentation of brainstem nuclei critical to consciousness.

作者信息

Olchanyi Mark David, Augustinack Jean, Haynes Robin L, Lewis Laura D, Cicero Nicholas, Li Jian, Destrieux Christophe, Folkerth Rebecca D, Kinney Hannah C, Fischl Bruce, Brown Emery N, Iglesias Juan Eugenio, Edlow Brian L

出版信息

medRxiv. 2024 Oct 18:2024.09.26.24314117. doi: 10.1101/2024.09.26.24314117.

Abstract

While substantial progress has been made in mapping the connectivity of cortical networks responsible for conscious awareness, neuroimaging analysis of subcortical arousal networks that modulate arousal (i.e., wakefulness) has been limited by a lack of a robust segmentation procedures for brainstem arousal nuclei. Automated segmentation of brainstem arousal nuclei is an essential step toward elucidating the physiology of arousal in human consciousness and the pathophysiology of disorders of consciousness. We created a probabilistic atlas of brainstem arousal nuclei built on diffusion MRI scans of five ex vivo human brain specimens scanned at 750 μm isotropic resolution. Labels of arousal nuclei used to generate the probabilistic atlas were manually annotated with reference to nucleus-specific immunostaining in two of the five brain specimens. We then developed a Bayesian segmentation algorithm that utilizes the probabilistic atlas as a generative model and automatically identifies brainstem arousal nuclei in a resolution- and contrast-agnostic manner. The segmentation method displayed high accuracy in both healthy and lesioned in vivo T1 MRI scans and high test-retest reliability across both T1 and T2 MRI contrasts. Finally, we show that the segmentation algorithm can detect volumetric changes and differences in magnetic susceptibility within brainstem arousal nuclei in Alzheimer's disease and traumatic coma, respectively. We release the probabilistic atlas and Bayesian segmentation tool in FreeSurfer to advance the study of human consciousness and its disorders.

摘要

虽然在绘制负责意识觉知的皮层网络连接方面已取得重大进展,但对调节觉醒(即清醒状态)的皮层下觉醒网络的神经影像学分析,一直受到脑干觉醒核缺乏强大分割程序的限制。脑干觉醒核的自动分割是阐明人类意识中觉醒生理学以及意识障碍病理生理学的关键一步。我们基于对五个离体人脑标本进行的各向同性分辨率为750μm的扩散磁共振成像扫描,创建了一个脑干觉醒核概率图谱。用于生成概率图谱的觉醒核标签,是在五个脑标本中的两个标本中,参照核特异性免疫染色手动标注的。然后,我们开发了一种贝叶斯分割算法,该算法将概率图谱用作生成模型,并以一种与分辨率和对比度无关的方式自动识别脑干觉醒核。该分割方法在健康和病变的活体T1磁共振成像扫描中均显示出高精度,并且在T1和T2磁共振成像对比度下均具有高重测可靠性。最后,我们表明该分割算法分别可以检测出阿尔茨海默病和创伤性昏迷中脑干觉醒核内的体积变化和磁化率差异。我们在FreeSurfer中发布了概率图谱和贝叶斯分割工具,以推动对人类意识及其障碍的研究。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验