State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, 22 Xinong Rd, Yangling, Shaanxi Province, 712100, People's Republic of China.
Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China.
Planta. 2024 Oct 14;260(5):115. doi: 10.1007/s00425-024-04545-5.
Our studies reveal the involvement of SPI in cytoskeleton-associated trichome morphogenesis, expanding the roles of SPI in regulating plant epidermal cell development. Acquisition of distinct shapes is crucial for cells to perform their biological functions in multicellular organisms. Trichomes are specialized epidermal cells of plant aerial parts, offering an excellent paradigm for dissecting the underlying regulatory mechanism of plant cell shape development at the single-cell level. SPIRRIG (SPI) that encodes a BEACH domain-containing protein was initially identified to regulate trichome branch extension, but the possible pathway(s) through which SPI regulates trichome morphogenesis remain unclear. Here, we report that SPI facilitates microtubule-associated regulation on trichome branching in Arabidopsis. Functional loss of SPI results in trichome morphogenesis hyper-sensitive to the microtubule-disrupting drug oryzalin, implying SPI may mediate microtubule stability during trichome development. Accordingly, spi mutant has less-branched trichomes. Detailed live-cell imaging showed that the spatio-temporal microtubule organization during trichome morphogenesis is aberrant in spi mutants. Further genetic investigation indicated that SPI may cooperate with ZWICHEL (ZWI) to modulate microtubule dynamics during trichome morphogenesis. ZWI encodes a kinesin-like calmodulin-binding protein (KCBP), whose distribution is necessary for the proper microtubule organization in trichomes, and zwi mutants produce less-branched trichomes as well. Trichome branching is further inhibited in spi-3 zwi-101 double mutants compared to either of the single mutant. Moreover, we found SPI could co-localize with the MYTH4 domain of ZWI. Taken together, our results expand the role of SPI in regulating trichome morphogenesis and also reveal a molecular and genetic pathway in plant cell shape formation control.
我们的研究揭示了 SPI 参与了与细胞骨架相关的毛状体形态发生,扩展了 SPI 调节植物表皮细胞发育的作用。获得不同的形状对于多细胞生物中的细胞执行其生物功能至关重要。毛状体是植物地上部分的特化表皮细胞,为剖析植物细胞形状发育的基础调控机制提供了一个很好的范例,可在单细胞水平上进行。最初鉴定出编码含有 BEACH 结构域的蛋白质的 SPIRRIG(SPI)来调节毛状体分支延伸,但 SPI 调节毛状体形态发生的可能途径仍不清楚。在这里,我们报告 SPI 促进了拟南芥中微管相关的毛状体分支调节。SPI 功能丧失导致毛状体形态发生对微管破坏药物 Or yzal in 超敏感,这意味着 SPI 可能在毛状体发育过程中介导微管稳定性。因此,spi 突变体的毛状体分支较少。详细的活细胞成像显示,在 spi 突变体中,毛状体形态发生过程中的时空微管组织是异常的。进一步的遗传研究表明,SPI 可能与 ZWICHEL(ZWI)合作,在毛状体形态发生过程中调节微管动力学。ZWI 编码一种肌球蛋白样钙调蛋白结合蛋白(KCBP),其分布对于毛状体中微管的正确组织是必要的,zwi 突变体也产生较少分支的毛状体。与单个突变体相比,spi-3 zwi-101 双突变体中的毛状体分支进一步受到抑制。此外,我们发现 SPI 可以与 ZWI 的 MYTH4 结构域共定位。综上所述,我们的研究结果扩展了 SPI 在调节毛状体形态发生中的作用,同时揭示了植物细胞形状形成控制中的一个分子和遗传途径。