Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA.
Department of Plant & Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA.
Curr Biol. 2018 Aug 6;28(15):2459-2466.e4. doi: 10.1016/j.cub.2018.05.076. Epub 2018 Jul 19.
Cell types with wildly varying shapes use many of the same signaling and cytoskeletal proteins to dynamically pattern their geometry [1-3]. Plant cells are encased in a tough outer cell wall, and growth patterns are indirectly controlled by the cytoskeleton and its ability to locally specify the material properties of the wall [4, 5]. Broad and non-overlapping domains of actin and microtubules are predicted to create sharp cell-wall boundaries with distinct mechanical properties [6] that are often proposed to direct growth patterns and cell shape [1, 6, 7]. However, mechanisms by which the cytoskeleton is patterned at the spatial and temporal scales that dictate cell morphology are not known. Here, we used combinations of live-cell imaging probes and unique morphology mutants in Arabidopsis to discover how the microtubule and actin systems are spatially coordinated to pattern polarized growth in leaf epidermal cells. The DOCK family guanine nucleotide exchange factor (GEF) SPIKE1 [8, 9] clusters and activates conserved heteromeric WAVE/SCAR and ARP2/3 complexes at the cell apex to generate organized actin networks that define general cytoplasmic flow patterns. Cortical microtubules corral punctate SPIKE1 signaling nodules and restrict actin polymerization within a broad microtubule-depletion zone at the cell apex. Our data provide a useful model for cell-shape control, in which a GEF, actin filament nucleation complexes, microtubules, and the cell wall function as interacting systems that dynamically pattern polarized growth.
细胞类型具有千变万化的形状,它们使用许多相同的信号和细胞骨架蛋白来动态地塑造其几何形状[1-3]。植物细胞被包裹在坚硬的细胞壁中,其生长模式通过细胞骨架及其局部指定细胞壁材料特性的能力间接控制[4,5]。宽而不重叠的肌动蛋白和微管域预计会在具有独特机械特性的细胞壁边界处产生清晰的边界[6],这些特性通常被认为可以指导生长模式和细胞形状[1,6,7]。然而,细胞骨架在决定细胞形态的时空尺度上的模式化机制尚不清楚。在这里,我们使用活细胞成像探针和拟南芥中独特形态突变体的组合,发现微管和肌动蛋白系统如何在空间上协调以模式化叶片表皮细胞的极化生长。DOCK 家族鸟嘌呤核苷酸交换因子(GEF)SPIKE1[8,9]在细胞顶端聚集并激活保守的异源 WAVE/SCAR 和 ARP2/3 复合物,从而生成有组织的肌动蛋白网络,定义一般细胞质流动模式。皮层微管将点状 SPIKE1 信号结节束缚起来,并在细胞顶端的广泛微管耗竭区域内限制肌动蛋白聚合。我们的数据提供了一个用于细胞形状控制的有用模型,其中 GEF、肌动蛋白丝成核复合物、微管和细胞壁作为相互作用的系统,动态地塑造极化生长。