Suppr超能文献

通过低温熔盐烧蚀和颗粒边界掺杂提高氟化物固体电解质的锂离子电导率

Boosting Li-Ion Conductivity of Fluoride Solid Electrolyte by Low-Temperature Molten Salt Ablation and Particle Boundary Doping.

作者信息

Nie Xianhui, Lei Meng, Hu Jiulin, Li Chilin

机构信息

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China.

Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

ACS Nano. 2024 Oct 29;18(43):30099-30112. doi: 10.1021/acsnano.4c12399. Epub 2024 Oct 14.

Abstract

Halide solid electrolytes (SEs) are attracting great attention, owing to their high ionic conductivity and excellent high-voltage compatibility. However, severe moisture sensitivity, poor thermal stability, and instability at the lithium metal anode interface with chloride and bromide SEs retard their applications in solid-state lithium metal batteries. Fluoride SEs are expected to solve these problems, but they are now plagued by inadequate room-temperature (RT) ionic conductivity. Herein, a low-temperature molten salt (LiCl+1.33AlCl) ablation method is proposed to enhance the ionic conductivity of monoclinic LiGaF by particle boundary doping. The RT ionic conductivity of LiGaF is correspondingly increased by 2 orders of magnitude, and the conductivity reaches 10 S cm at 60 °C. The improved ionic conductivity benefits from the enhancement of interfacial ion transport, with the formation of more conductive chlorine-doped LiGaFCl and in situ binder LiAlCl to cement surrounding nanoparticles. The as-synthesized LiGaF demonstrates outstanding humidity tolerance without conductivity degradation after exposure to a relative humidity of up to 35%. It also exhibits the widest electrochemical stability window experimentally (close to 6 V) compared with other state-of-the-art SEs. The solid-state Li/LiGaF/LiFePO cell with a stable Li-conductive polymer interface is successfully driven for at least 200 cycles at 0.5C. Our study provides a solution to various chemical and electrochemical stability issues encountered by the halide SE family.

摘要

卤化物固体电解质(SEs)因其高离子电导率和出色的高压兼容性而备受关注。然而,严重的湿度敏感性、较差的热稳定性以及与氯化物和溴化物SEs在锂金属阳极界面处的不稳定性阻碍了它们在固态锂金属电池中的应用。氟化物SEs有望解决这些问题,但目前它们受到室温(RT)离子电导率不足的困扰。在此,提出了一种低温熔盐(LiCl + 1.33AlCl)烧蚀方法,通过颗粒边界掺杂来提高单斜LiGaF的离子电导率。LiGaF的室温离子电导率相应提高了2个数量级,在60°C时电导率达到10 S cm。离子电导率的提高得益于界面离子传输的增强,形成了更多导电的氯掺杂LiGaFCl和原位粘合剂LiAlCl来粘结周围的纳米颗粒。合成的LiGaF表现出出色的耐湿性,在暴露于高达35%的相对湿度后电导率没有下降。与其他现有SEs相比,它还在实验中展现出最宽的电化学稳定性窗口(接近6 V)。具有稳定锂导电聚合物界面的固态Li/LiGaF/LiFePO电池在0.5C下成功驱动至少200次循环。我们的研究为卤化物SE家族遇到的各种化学和电化学稳定性问题提供了解决方案。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验