Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France.
Collège Doctoral-Sorbonne Université, Paris, France.
PLoS Biol. 2024 Oct 14;22(10):e3002814. doi: 10.1371/journal.pbio.3002814. eCollection 2024 Oct.
Natural transformation is the only mechanism of genetic exchange controlled by the recipient bacteria. We quantified its rates in 786 clinical strains of the human pathogens Legionella pneumophila (Lp) and 496 clinical and environmental strains of Acinetobacter baumannii (Ab). The analysis of transformation rates in the light of phylogeny revealed they evolve by a mixture of frequent small changes and a few large quick jumps across 6 orders of magnitude. In standard conditions close to half of the strains of Lp and a more than a third in Ab are below the detection limit and thus presumably non-transformable. Ab environmental strains tend to have higher transformation rates than the clinical ones. Transitions to non-transformability were frequent and usually recent, suggesting that they are deleterious and subsequently purged by natural selection. Accordingly, we find that transformation decreases genetic linkage in both species, which might accelerate adaptation. Intragenomic conflicts with chromosomal mobile genetic elements (MGEs) and plasmids could explain these transitions and a GWAS confirmed systematic negative associations between transformation and MGEs: plasmids and other conjugative elements in Lp, prophages in Ab, and transposable elements in both. In accordance with the hypothesis of modulation of transformation rates by genetic conflicts, transformable strains have fewer MGEs in both species and some MGEs inactivate genes implicated in the transformation with heterologous DNA (in Ab). Innate defense systems against MGEs are associated with lower transformation rates, especially restriction-modification systems. In contrast, CRISPR-Cas systems are associated with higher transformation rates suggesting that adaptive defense systems may facilitate cell protection from MGEs while preserving genetic exchanges by natural transformation. Ab and Lp have different lifestyles, gene repertoires, and population structure. Nevertheless, they exhibit similar trends in terms of variation of transformation rates and its determinants, suggesting that genetic conflicts could drive the evolution of natural transformation in many bacteria.
自然转化是唯一由受体细菌控制的遗传交换机制。我们量化了 786 株人类病原体嗜肺军团菌(Lp)和 496 株临床和环境分离株鲍曼不动杆菌(Ab)的转化速率。根据系统发育分析转化速率,发现它们是由频繁的小变化和少数跨越 6 个数量级的大快速跳跃混合进化而来。在接近标准的条件下,Lp 的近一半菌株和 Ab 的超过三分之一菌株低于检测限,因此推测不可转化。Ab 环境菌株的转化率高于临床菌株。非转化状态的转变频繁且通常是近期的,这表明它们是有害的,随后被自然选择清除。因此,我们发现转化降低了这两个物种的遗传连锁,这可能加速了适应。与染色体移动遗传元件(MGEs)和质粒的基因组内冲突可以解释这些转变,GWAS 证实了转化与 MGEs 之间存在系统的负相关:Lp 中的质粒和其他可接合元件、Ab 中的噬菌体以及两者中的可移动元件。与遗传冲突调节转化速率的假设一致,可转化菌株在这两个物种中的 MGEs 较少,并且一些 MGEs 使与异源 DNA 的转化相关的基因失活(在 Ab 中)。针对 MGEs 的先天防御系统与较低的转化速率相关,尤其是限制修饰系统。相反,CRISPR-Cas 系统与较高的转化速率相关,表明适应性防御系统可能有助于细胞免受 MGEs 的侵害,同时通过自然转化保留遗传交换。Ab 和 Lp 具有不同的生活方式、基因库和种群结构。然而,它们在转化速率及其决定因素的变化方面表现出相似的趋势,这表明遗传冲突可能驱动许多细菌自然转化的进化。