文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

原核生物抗病毒武器库的系统和定量分析。

Systematic and quantitative view of the antiviral arsenal of prokaryotes.

机构信息

Université de Paris, IAME, UMR 1137, INSERM, Paris, France.

SEED, U1284, INSERM, Université de Paris, Paris, France.

出版信息

Nat Commun. 2022 May 10;13(1):2561. doi: 10.1038/s41467-022-30269-9.


DOI:10.1038/s41467-022-30269-9
PMID:35538097
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9090908/
Abstract

Bacteria and archaea have developed multiple antiviral mechanisms, and genomic evidence indicates that several of these antiviral systems co-occur in the same strain. Here, we introduce DefenseFinder, a tool that automatically detects known antiviral systems in prokaryotic genomes. We use DefenseFinder to analyse 21000 fully sequenced prokaryotic genomes, and find that antiviral strategies vary drastically between phyla, species and strains. Variations in composition of antiviral systems correlate with genome size, viral threat, and lifestyle traits. DefenseFinder will facilitate large-scale genomic analysis of antiviral defense systems and the study of host-virus interactions in prokaryotes.

摘要

细菌和古菌已经开发出多种抗病毒机制,基因组证据表明,其中一些抗病毒系统存在于同一菌株中。在这里,我们引入了 DefenseFinder,这是一种自动检测原核基因组中已知抗病毒系统的工具。我们使用 DefenseFinder 分析了 21000 个完全测序的原核基因组,发现抗病毒策略在门、种和菌株之间有很大差异。抗病毒系统组成的变化与基因组大小、病毒威胁和生活方式特征有关。DefenseFinder 将促进抗病毒防御系统的大规模基因组分析以及原核生物中宿主-病毒相互作用的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e8d/9090908/9aa1dc8dec9e/41467_2022_30269_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e8d/9090908/bedf66c80350/41467_2022_30269_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e8d/9090908/aaab79790947/41467_2022_30269_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e8d/9090908/68f1aa8ca596/41467_2022_30269_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e8d/9090908/9aa1dc8dec9e/41467_2022_30269_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e8d/9090908/bedf66c80350/41467_2022_30269_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e8d/9090908/aaab79790947/41467_2022_30269_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e8d/9090908/68f1aa8ca596/41467_2022_30269_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e8d/9090908/9aa1dc8dec9e/41467_2022_30269_Fig4_HTML.jpg

相似文献

[1]
Systematic and quantitative view of the antiviral arsenal of prokaryotes.

Nat Commun. 2022-5-10

[2]
Viral diversity threshold for adaptive immunity in prokaryotes.

mBio. 2012-12-4

[3]
PADS Arsenal: a database of prokaryotic defense systems related genes.

Nucleic Acids Res. 2020-1-8

[4]
Estimate of the sequenced proportion of the global prokaryotic genome.

Microbiome. 2020-9-16

[5]
A proposed genus boundary for the prokaryotes based on genomic insights.

J Bacteriol. 2014-6

[6]
Comparative genomics of defense systems in archaea and bacteria.

Nucleic Acids Res. 2013-3-6

[7]
Theory of prokaryotic genome evolution.

Proc Natl Acad Sci U S A. 2016-10-11

[8]
Genomic and phylogenetic perspectives on the evolution of prokaryotes.

Syst Biol. 2001-8

[9]
Capturing prokaryotic dark matter genomes.

Res Microbiol. 2015-12

[10]

2004

引用本文的文献

[1]
Multigenerational proteolytic inactivation of restriction upon subtle genomic hypomethylation in Pseudomonas aeruginosa.

Nat Microbiol. 2025-9-8

[2]
Snapshot of Defense Systems in Multidrug Resistant .

MicroPubl Biol. 2025-8-20

[3]
Gabija restricts phages that antagonize a conserved host DNA repair complex.

bioRxiv. 2025-8-30

[4]
Modified DNA substrate selectivity by GmrSD-family Type IV restriction enzyme BrxU.

Philos Trans R Soc Lond B Biol Sci. 2025-9-4

[5]
Diversity and abundance of ring nucleases in type III CRISPR-Cas loci.

Philos Trans R Soc Lond B Biol Sci. 2025-9-4

[6]
Bacteria-phage infection network structure and genomic defence system content predict efficacy of a phage therapy cocktail against from chronic lung infections.

Philos Trans R Soc Lond B Biol Sci. 2025-9-4

[7]
Gene co-occurrence and its association with phage infectivity in bacterial pangenomes.

Philos Trans R Soc Lond B Biol Sci. 2025-9-4

[8]
Phage defence-system abundances vary across environments and increase with viral density.

Philos Trans R Soc Lond B Biol Sci. 2025-9-4

[9]
Viral effectors trigger innate immunity across the tree of life.

Philos Trans R Soc Lond B Biol Sci. 2025-9-4

[10]
Phage susceptibility to a minimal, modular synthetic CRISPR-Cas system in is nutrient dependent.

Philos Trans R Soc Lond B Biol Sci. 2025-9-4

本文引用的文献

[1]
A unique mode of nucleic acid immunity performed by a multifunctional bacterial enzyme.

Cell Host Microbe. 2022-4-13

[2]
Phages and their satellites encode hotspots of antiviral systems.

Cell Host Microbe. 2022-5-11

[3]
A phage parasite deploys a nicking nuclease effector to inhibit viral host replication.

Nucleic Acids Res. 2022-8-26

[4]
Resolving the structure of phage-bacteria interactions in the context of natural diversity.

Nat Commun. 2022-1-18

[5]
Antiviral activity of bacterial TIR domains via immune signalling molecules.

Nature. 2021-12

[6]
Rapid evolutionary turnover of mobile genetic elements drives bacterial resistance to phages.

Science. 2021-10-22

[7]
Cyclic CMP and cyclic UMP mediate bacterial immunity against phages.

Cell. 2021-11-11

[8]
Identification and classification of antiviral defence systems in bacteria and archaea with PADLOC reveals new system types.

Nucleic Acids Res. 2021-11-8

[9]
Prophages encode phage-defense systems with cognate self-immunity.

Cell Host Microbe. 2021-11-10

[10]
Temporal shifts in antibiotic resistance elements govern phage-pathogen conflicts.

Science. 2021-7-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索