Biohybrid Materials, Department of Biotechnology and Chemical Technology, and ‡Molecular Materials, Department of Applied Physics, Aalto University , 00076 Aalto, Finland.
ACS Nano. 2015 Nov 24;9(11):11278-85. doi: 10.1021/acsnano.5b04912. Epub 2015 Oct 28.
Atomic crystal structure affects the electromagnetic and thermal properties of common matter. Similarly, the nanoscale structure controls the properties of higher length-scale metamaterials, for example, nanoparticle superlattices and photonic crystals. Electrostatic self-assembly of oppositely charged nanoparticles has recently become a convenient way to produce crystalline nanostructures. However, understanding and controlling the assembly of soft nonmetallic particle crystals with long-range translational order remains a major challenge. Here, we show the electrostatic self-assembly of binary soft particle cocrystals, consisting of apoferritin protein cages and poly(amidoamine) dendrimers (PAMAM), with very large crystal domain sizes. A systematic series of PAMAM dendrimers with generations from two to seven were used to produce the crystals, which showed a dendrimer generation dependency on the crystal structure and lattice constant. The systematic approach presented here offers a transition from trial-and-error experiments to a fundamental understanding and control over the nanostructure. The structure and stability of soft particle cocrystals are of major relevance for applications where a high degree of structural control is required, for example, protein-based mesoporous materials, nanoscale multicompartments, and metamaterials.
原子晶体结构会影响常见物质的电磁和热性质。同样,纳米尺度的结构控制着更高长度尺度超材料的性质,例如,纳米粒子超晶格和光子晶体。带相反电荷的纳米粒子的静电自组装最近已成为生产结晶纳米结构的一种便捷方法。然而,理解和控制具有长程平移有序的软非金属粒子晶体的组装仍然是一个主要挑战。在这里,我们展示了由脱铁铁蛋白蛋白笼和聚(酰胺-胺)树枝状大分子(PAMAM)组成的二元软粒子共晶的静电自组装,其具有非常大的晶体畴尺寸。使用从两代到七代的一系列系统的 PAMAM 树枝状大分子来生产晶体,其显示出对晶体结构和晶格常数的树枝状大分子代依赖性。此处呈现的系统方法提供了从反复试验实验到对纳米结构的基本理解和控制的转变。软粒子共晶的结构和稳定性对于需要高度结构控制的应用非常重要,例如基于蛋白质的介孔材料、纳米级多隔室和超材料。