Muneer Gul, Gebreyesus Sofani Tafesse, Chen Ciao-Syuan, Lee Tzu-Tsung, Yu Fengchao, Lin Chih-An, Hsieh Min-Shu, Nesvizhskii Alexey I, Ho Chao-Chi, Yu Sung-Liang, Tu Hsiung-Lin, Chen Yu-Ju
Institute of Chemistry, Academia Sinica, Taipei, 115201, Taiwan.
Institute of Biochemical Sciences, National Taiwan University, Taipei, 106319, Taiwan.
Adv Sci (Weinh). 2025 Jan;12(1):e2402421. doi: 10.1002/advs.202402421. Epub 2024 Oct 14.
Protein phosphorylation plays a crucial role in regulating disease phenotypes and serves as a key target for drug development. Mapping nanoscale-to-single-cell samples can unravel the heterogeneity of cellular signaling events. However, it remains a formidable analytical challenge due to the low detectability, abundance, and stoichiometry of phosphorylation sites. Here, we present a Chip-DIA strategy, integrating a microfluidic-based phosphoproteomic chip (iPhosChip) with data-independent acquisition mass spectrometry (DIA-MS) for ultrasensitive nanoscale-to-single-cell phosphoproteomic profiling. The iPhosChip operates as an all-in-one station that accommodates both quantifiable cell capture/imaging and the entire phosphoproteomic workflow in a highly streamlined and multiplexed manner. Coupled with a sample size-comparable library-based DIA-MS strategy, Chip-DIA achieved ultra-high sensitivity, detecting 1076±158 to 15869±1898 phosphopeptides from 10±0 to 1013±4 cells, and revealed the first single-cell phosphoproteomic landscape comprising druggable sites and basal phosphorylation-mediated networks in lung cancer. Notably, the sensitivity and coverage enabled the illumination of heterogeneous cytoskeleton remodeling and cytokeratin signatures in patient-derived cells resistant to third-generation EGFR therapy, stratifying mixed-lineage adenocarcinoma-squamous cell carcinoma subtypes, and identifying alternative targeted therapy for late-stage patients. With flexibility in module design and functionalization, Chip-DIA can be adapted to other PTM-omics to explore dysregulated PTM landscapes, thereby guiding therapeutic strategies toward precision oncology.
蛋白质磷酸化在调节疾病表型中起着关键作用,并且是药物开发的关键靶点。对纳米级到单细胞样本进行图谱绘制可以揭示细胞信号转导事件的异质性。然而,由于磷酸化位点的可检测性低、丰度低和化学计量比低,这仍然是一项艰巨的分析挑战。在此,我们提出了一种芯片 - 数据非依赖采集(Chip-DIA)策略,即将基于微流控的磷酸化蛋白质组学芯片(iPhosChip)与数据非依赖采集质谱(DIA-MS)相结合,用于超灵敏的纳米级到单细胞磷酸化蛋白质组学分析。iPhosChip作为一个一体化平台,以高度简化和多重化的方式实现了可定量的细胞捕获/成像以及整个磷酸化蛋白质组学工作流程。结合基于文库且样本量可比的DIA-MS策略,Chip-DIA实现了超高灵敏度,从10±0到1013±4个细胞中检测到1076±158至15869±1898个磷酸肽,并揭示了肺癌中首个包含可成药位点和基础磷酸化介导网络的单细胞磷酸化蛋白质组图谱。值得注意的是,其灵敏度和覆盖范围使得能够阐明对第三代表皮生长因子受体(EGFR)治疗耐药的患者来源细胞中的异质性细胞骨架重塑和细胞角蛋白特征,区分混合谱系腺癌 - 鳞状细胞癌亚型,并为晚期患者确定替代靶向治疗方案。由于模块设计和功能化具有灵活性,Chip-DIA可适用于其他翻译后修饰组学,以探索失调的翻译后修饰图谱,从而指导精准肿瘤学的治疗策略。