Belgacem Besma, Nasri Nabil, Ben Yahia Mouna, Oueslati Abderrazek, Ben Hassen Rached
Laboratory of Materials and Environment for Sustainable Development LR18ES10, ISSBAT, University of Tunis El Manar Tunis Tunisia
Institute Charles Gerhardt of Montpellier (ICGM), Univ. Montpellier, CNRS, ENSCM Montpellier France.
RSC Adv. 2024 Oct 14;14(44):32292-32303. doi: 10.1039/d4ra05308g. eCollection 2024 Oct 9.
A new double perovskite phase, Sr(SnSbIn)O, was successfully synthesized a solid-state reaction and comprehensively characterized using both experimental and theoretical techniques. Powder X-ray diffraction was used to determine the crystal structure, while scanning electron microscopy (SEM) revealed a high degree of densification and uniform grain distribution across the ceramic. Raman and Fourier-transform infrared (FTIR) absorption spectra of the powder present broad bands predominantly due to different stretching modes of the various SnO , InO and SbO octahedra in the region = 400-800 cm. An analysis of the UV-Vis diffuse reflectance spectrum shows excellent optical transparency and gives an estimation of an optical gap ∼ 3.6 eV on bulk Sr(SnSbIn)O, making this material a promising candidate for optoelectronic devices. Density Functional Theory calculations further validated the experimental findings, confirming the crystal structure and providing insight into the electronic and vibrational properties. Impedance spectroscopy revealed non-Debye dielectric relaxation and confirmed typical negative temperature coefficient of resistance (NTCR) behavior, underscoring the material's potential for temperature-sensing applications. The primary conduction mechanism, modeled as correlated barrier-hopping (CBH), was complemented by an Arrhenius-type process with activation energies of 0.33 eV and 0.9 eV across two distinct temperature ranges.
通过固态反应成功合成了一种新型双钙钛矿相Sr(SnSbIn)O,并使用实验和理论技术对其进行了全面表征。利用粉末X射线衍射确定晶体结构,而扫描电子显微镜(SEM)显示陶瓷具有高度致密化和均匀的晶粒分布。粉末的拉曼光谱和傅里叶变换红外(FTIR)吸收光谱在400 - 800 cm区域呈现出主要归因于各种SnO、InO和SbO八面体不同拉伸模式的宽带。紫外-可见漫反射光谱分析表明该材料具有出色的光学透明度,并估计块状Sr(SnSbIn)O的光学带隙约为3.6 eV,这使得该材料成为光电器件的有前途候选材料。密度泛函理论计算进一步验证了实验结果,确认了晶体结构并深入了解了电子和振动特性。阻抗谱揭示了非德拜介电弛豫并证实了典型的负电阻温度系数(NTCR)行为,突出了该材料在温度传感应用中的潜力。主要传导机制被建模为相关势垒跳跃(CBH),并在两个不同温度范围内由活化能分别为0.33 eV和0.9 eV的阿仑尼乌斯型过程补充。