Suppr超能文献

用于组织工程的3D打印支架上生长的细胞中扩散张量和曲折度的模拟。

simulations of diffusion tensors and tortuosity in cells grown on 3D-printed scaffolds for tissue engineering.

作者信息

Cartlidge Topaz A A, Wu Yan, Robertson Thomas B R, Katsamenis Orestis L, Pileio Giuseppe

机构信息

School of Chemistry, University of Southampton SO17 1BJ UK

μ-VIS X-ray Imaging Centre, University of Southampton SO17 1BJ UK.

出版信息

RSC Adv. 2024 Oct 14;14(44):32398-32410. doi: 10.1039/d4ra05362a. eCollection 2024 Oct 9.

Abstract

Tissue engineering is set to revolutionise regenerative medicine, drug discovery, and cancer biology. For this to succeed, improved 3D imaging methods that penetrate non-invasively into the developing tissue is fundamental to guide the design of new and improved 3D supports. In particular, it is very important to characterise the time- and space-heterogeneous pore network that continuously changes as the tissue grows, since delivery of nutrients and removal of waste is key to avoid the development of necrotic tissues. In this paper, we combine high-resolution microfocus Computed Tomography (μCT) imaging and simulations to calculate the diffusion tensor of molecules diffusing in the actual pore structure of a tissue grown on 3D-printed plastic scaffolds. We use such tensors to derive information about the changing pore network and derive tortuosity, a key parameter to understand how pore interconnection changes with cell proliferation. Such information can be used to improve the design of 3D-printed supports as well as to validate and improve cell culture protocols.

摘要

组织工程学必将给再生医学、药物研发和癌症生物学带来变革。要实现这一点,改进后的三维成像方法能够非侵入性地穿透发育中的组织,这对于指导新型和改良三维支架的设计至关重要。特别是,表征随着组织生长而不断变化的时空异质孔隙网络非常重要,因为营养物质的输送和废物的清除是避免坏死组织形成的关键。在本文中,我们结合高分辨率微焦点计算机断层扫描(μCT)成像和模拟,来计算在三维打印塑料支架上生长的组织实际孔隙结构中扩散分子的扩散张量。我们使用这些张量来获取有关不断变化的孔隙网络的信息,并得出曲折度,这是理解孔隙互连如何随细胞增殖而变化的关键参数。这些信息可用于改进三维打印支架的设计,以及验证和改进细胞培养方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c11d/11472346/39feaf60d888/d4ra05362a-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验