Suppr超能文献

刺激响应性压电纳米纤维支架促进 3D 培养中小细胞外囊泡的高效生产。

Stimulative piezoelectric nanofibrous scaffolds for enhanced small extracellular vesicle production in 3D cultures.

机构信息

Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.

出版信息

Biomater Sci. 2024 Nov 5;12(22):5728-5741. doi: 10.1039/d4bm00504j.

Abstract

Small extracellular vesicles (sEVs) have great promise as effective carriers for drug delivery. However, the challenges associated with the efficient production of sEVs hinder their clinical applications. Herein, we report a stimulative 3D culture platform for enhanced sEV production. The proposed platform consists of a piezoelectric nanofibrous scaffold (PES) coupled with acoustic stimulation to enhance sEV production of cells in a 3D biomimetic microenvironment. Combining cell stimulation with a 3D culture platform in this stimulative PES enables a 15.7-fold increase in the production rate per cell with minimal deviations in particle size and protein composition compared with standard 2D cultures. We find that the enhanced sEV production is attributable to the activation and upregulation of crucial sEV production steps through the synergistic effect of stimulation and the 3D microenvironment. Moreover, changes in cell morphology lead to cytoskeleton redistribution through cell-matrix interactions in the 3D cultures. This in turn facilitates intracellular EV trafficking, which impacts the production rate. Overall, our work provides a promising 3D cell culture platform based on piezoelectric biomaterials for enhanced sEV production. This platform is expected to accelerate the potential use of sEVs for drug delivery and broad biomedical applications.

摘要

小细胞外囊泡 (sEVs) 作为有效的药物传递载体具有很大的潜力。然而,与高效生产 sEVs 相关的挑战阻碍了它们的临床应用。在此,我们报告了一种增强 sEV 生产的刺激 3D 培养平台。该平台由压电纳米纤维支架 (PES) 与声刺激相结合组成,以增强 3D 仿生微环境中细胞的 sEV 生产。在这个刺激 PES 中,将细胞刺激与 3D 培养平台相结合,可使细胞的产率提高 15.7 倍,而粒径和蛋白质组成的偏差最小,与标准 2D 培养相比。我们发现,通过刺激和 3D 微环境的协同作用,增强的 sEV 生产归因于关键 sEV 生产步骤的激活和上调。此外,细胞形态的变化通过 3D 培养中的细胞-基质相互作用导致细胞骨架重新分布。这反过来又促进了细胞内 EV 运输,从而影响了产率。总体而言,我们的工作为基于压电生物材料的增强 sEV 生产提供了一种有前途的 3D 细胞培养平台。该平台有望加速 sEV 在药物传递和广泛的生物医学应用中的潜在用途。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cc6/11474809/17a825f25733/d4bm00504j-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验