Department of Biology, Institute of Molecular Plant Biology, ETH Zürich, Zürich, Switzerland.
Mol Biol Evol. 2024 Oct 4;41(10). doi: 10.1093/molbev/msae213.
Polyploids arise from whole-genome duplication (WGD) events, which have played important roles in genome evolution across eukaryotes. WGD can increase genome complexity, yield phenotypic novelty, and influence adaptation. Neo-polyploids have been reported to often show seemingly stochastic epigenetic and transcriptional changes, but this leaves open the question whether these changes persist in evolved polyploids. A powerful approach to address this is to compare diploids, neo-polyploids, and evolved polyploids of the same species. Arabidopsis arenosa is a species that allows us to do this-natural diploid and autotetraploid populations exist, while neo-tetraploids can be artificially generated. Here, we use ATAC-seq to assay local chromatin accessibility, and RNA-seq to study gene expression on matched leaf and petal samples from diploid, neo-tetraploid and evolved tetraploid A. arenosa. We found over 8,000 differentially accessible chromatin regions across all samples. These are largely tissue specific and show distinct trends across cytotypes, with roughly 70% arising upon WGD. Interestingly, only a small proportion is associated with expression changes in nearby genes. However, accessibility variation across cytotypes associates strongly with the number of nearby transposable elements. Relatively few genes were differentially expressed upon genome duplication, and ∼60% of these reverted to near-diploid levels in the evolved tetraploid, suggesting that most initial perturbations do not last. Our results provide new insights into how epigenomic and transcriptional mechanisms jointly respond to genome duplication and subsequent evolution of autopolyploids, and importantly, show that one cannot be directly predicted from the other.
多倍体是由全基因组复制(WGD)事件产生的,这些事件在真核生物的基因组进化中发挥了重要作用。WGD 可以增加基因组的复杂性,产生表型新颖性,并影响适应。已经报道了新多倍体经常表现出看似随机的表观遗传和转录变化,但这仍然存在一个问题,即这些变化是否在进化的多倍体中持续存在。解决这个问题的一种有力方法是比较同一物种的二倍体、新多倍体和进化的多倍体。Arabidopsis arenosa 是一种允许我们这样做的物种——自然存在二倍体和同源四倍体种群,而新的四倍体可以人工产生。在这里,我们使用 ATAC-seq 检测局部染色质可及性,并使用 RNA-seq 研究匹配的叶和花瓣样本中二倍体、新四倍体和进化四倍体 A. arenosa 的基因表达。我们在所有样本中发现了超过 8000 个差异可及染色质区域。这些区域主要是组织特异性的,并且在细胞型之间表现出不同的趋势,大约 70%是在 WGD 后产生的。有趣的是,只有一小部分与附近基因的表达变化有关。然而,细胞型之间的可及性变化与附近转座元件的数量密切相关。基因组复制后相对较少的基因表达差异,并且在进化的四倍体中约 60%的基因恢复到近二倍体水平,这表明大多数初始干扰不会持续存在。我们的研究结果为了解表观遗传和转录机制如何共同响应基因组复制以及同源多倍体的后续进化提供了新的见解,并且重要的是,表明一个不能直接从另一个预测。