Sun Yongqiang, Zhang Yongping, Wei Anqi, Shan Xin, Liu Qingwang, Fan Zhenzhong, Sun Ao, Zhu Lin, Kong Lingjin
Petroleum Engineering College, Northeast Petroleum University, Daqing 163000, China.
The Fourth Oil Extraction Plant of Daqing Oilfield Co., Ltd., Daqing 163000, China.
Nanomaterials (Basel). 2024 Oct 1;14(19):1590. doi: 10.3390/nano14191590.
Foam drainage agents enhance gas production by removing wellbore liquids. However, due to the ultra-high salinity environments of the Hechuan gas field (salinity up to 32.5 × 10 mg/L), no foam drainage agent is suitable for this gas field. To address this challenge, we developed a novel nanocomposite foam drainage system composed of quaternary ammonium and two types of nanoparticles. This work describes the design and synthesis of a quaternary ammonium foam drainage agent and nano-engineered stabilizers. Nonylphenol polyoxyethylene ether sulfosuccinate quaternary ammonium foam drainage agent was synthesized using maleic anhydride, sodium chloroacetate, N,N-dimethylpropylenediamine, etc., as precursors. We employed the Stöber method to create hydrophobic silica nanoparticles. Carbon quantum dots were then prepared and functionalized with dodecylamine. Finally, carbon quantum dots were incorporated into the mesopores of silica nanoparticles to enhance stability. Through optimization, the best performance was achieved with a (quaternary ammonium foam drainage agents)-(carbon quantum dots/silica nanoparticles) ratio of 5:1 and a total dosage of 1.1%. Under harsh conditions (salinity 35 × 10 mg/L, condensate oil 250 cm/m, temperature 80 °C), the system exhibited excellent stability with an initial foam height of 160 mm, remaining at 110 mm after 5 min. Additionally, it displayed good liquid-carrying capacity (160 mL), low surface tension (27.91 mN/m), and a long half-life (659 s). These results suggest the effectiveness of nanoparticle-enhanced foam drainage systems in overcoming high-salinity challenges. Previous foam drainage agents typically exhibited a salinity resistance of no more than 25 × 10 mg/L. In contrast, this innovative system demonstrates a superior salinity tolerance of up to 35 × 10 mg/L, addressing a significant gap in available agents for high-salinity gas fields. This paves the way for future development of advanced foam systems for gas well applications with high salinity.
泡沫排水剂通过去除井筒液体来提高气体产量。然而,由于合川气田的超高盐环境(盐度高达32.5×10毫克/升),没有适合该气田的泡沫排水剂。为应对这一挑战,我们开发了一种由季铵盐和两种类型的纳米颗粒组成的新型纳米复合泡沫排水系统。这项工作描述了季铵盐泡沫排水剂和纳米工程稳定剂的设计与合成。以马来酸酐、氯乙酸钠、N,N-二甲基丙二胺等为前体合成了壬基酚聚氧乙烯醚磺基琥珀酸季铵盐泡沫排水剂。我们采用Stöber法制备了疏水性二氧化硅纳米颗粒。然后制备了碳量子点并用十二胺进行功能化。最后,将碳量子点引入二氧化硅纳米颗粒的中孔以提高稳定性。通过优化,当(季铵盐泡沫排水剂)-(碳量子点/二氧化硅纳米颗粒)比例为5:1且总用量为1.1%时,实现了最佳性能。在苛刻条件下(盐度35×10毫克/升、凝析油250厘米/米、温度80℃),该系统表现出优异的稳定性,初始泡沫高度为160毫米,5分钟后保持在110毫米。此外,它还表现出良好的携液能力(160毫升)、低表面张力(27.91毫牛/米)和长半衰期(659秒)。这些结果表明纳米颗粒增强泡沫排水系统在克服高盐挑战方面的有效性。以前的泡沫排水剂通常表现出不超过25×10毫克/升的耐盐性。相比之下,这种创新系统表现出高达35×10毫克/升的卓越耐盐性,弥补了高盐气田可用剂的重大差距。这为未来开发用于高盐气井应用的先进泡沫系统铺平了道路。