Suppr超能文献

基于金属纳米半球的局域表面等离子体共振的衍射光栅的光学性质及应用

Optical Properties and Applications of Diffraction Grating Using Localized Surface Plasmon Resonance with Metal Nano-Hemispheres.

作者信息

Kubota Tomoya, Tokimori Shogo, Funato Kai, Kawata Hiroaki, Matsuyama Tetsuya, Wada Kenji, Okamoto Koichi

机构信息

Department of Physics and Electronics, Osaka Metropolitan University, Sakai-shi 599-8531, Osaka, Japan.

Equipment Sharing Center for Advanced Research and Innovation, Osaka Metropolitan University, Sakai-shi 599-8531, Osaka, Japan.

出版信息

Nanomaterials (Basel). 2024 Oct 5;14(19):1605. doi: 10.3390/nano14191605.

Abstract

This study investigates the optical properties of diffraction gratings using localized surface plasmon resonance (LSPR) with metal nano-hemispheres. We fabricated metal nano-hemisphere gratings (MNHGS) with Ga, Ag, and Au and examined their wavelength-selective diffraction properties. Our findings show that these gratings exhibit peak diffraction efficiencies at 300 nm, 500 nm, and 570 nm, respectively, corresponding to the LSPR wavelengths of each metal. The MNHGs were created through thermal nanoimprint and metal deposition, followed by annealing. The experimental and simulation results confirmed that the MNHGs selectively diffract light at their resonance wavelengths. Applying these findings to third-order nonlinear laser spectroscopy (MPT-TG method) enhances measurement sensitivity by reducing background noise through the selective diffraction of pump light while transmitting probe light. This innovation promises a highly sensitive method for observing subtle optical phenomena, enhancing the capabilities of nonlinear laser spectroscopy.

摘要

本研究利用金属纳米半球的局域表面等离子体共振(LSPR)来研究衍射光栅的光学特性。我们制备了由镓、银和金构成的金属纳米半球光栅(MNHGS),并研究了它们的波长选择性衍射特性。我们的研究结果表明,这些光栅分别在300纳米、500纳米和570纳米处呈现出峰值衍射效率,这与每种金属的LSPR波长相对应。MNHGs是通过热纳米压印、金属沉积,然后进行退火而制成的。实验和模拟结果证实,MNHGs在其共振波长处选择性地衍射光。将这些发现应用于三阶非线性激光光谱(MPT-TG方法),通过在传输探测光的同时对泵浦光进行选择性衍射来降低背景噪声,从而提高测量灵敏度。这一创新有望为观察微妙的光学现象提供一种高灵敏度的方法,增强非线性激光光谱的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5492/11478325/099a40abf6e3/nanomaterials-14-01605-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验