Willets Katherine A, Van Duyne Richard P
Department of Chemistry, Northwestern University, Evanston, IL 60208-3113, USA.
Annu Rev Phys Chem. 2007;58:267-97. doi: 10.1146/annurev.physchem.58.032806.104607.
Localized surface plasmon resonance (LSPR) spectroscopy of metallic nanoparticles is a powerful technique for chemical and biological sensing experiments. Moreover, the LSPR is responsible for the electromagnetic-field enhancement that leads to surface-enhanced Raman scattering (SERS) and other surface-enhanced spectroscopic processes. This review describes recent fundamental spectroscopic studies that reveal key relationships governing the LSPR spectral location and its sensitivity to the local environment, including nanoparticle shape and size. We also describe studies on the distance dependence of the enhanced electromagnetic field and the relationship between the plasmon resonance and the Raman excitation energy. Lastly, we introduce a new form of LSPR spectroscopy, involving the coupling between nanoparticle plasmon resonances and adsorbate molecular resonances. The results from these fundamental studies guide the design of new sensing experiments, illustrated through applications in which researchers use both LSPR wavelength-shift sensing and SERS to detect molecules of chemical and biological relevance.
金属纳米颗粒的局域表面等离子体共振(LSPR)光谱是用于化学和生物传感实验的一项强大技术。此外,LSPR 导致了电磁场增强,进而引发表面增强拉曼散射(SERS)及其他表面增强光谱过程。本综述描述了近期的基础光谱研究,这些研究揭示了控制 LSPR 光谱位置及其对局部环境(包括纳米颗粒形状和尺寸)敏感性的关键关系。我们还描述了关于增强电磁场的距离依赖性以及等离子体共振与拉曼激发能量之间关系的研究。最后,我们介绍了一种新的 LSPR 光谱形式,涉及纳米颗粒等离子体共振与吸附分子共振之间的耦合。这些基础研究的结果指导了新传感实验的设计,通过研究人员使用 LSPR 波长位移传感和 SERS 来检测具有化学和生物学相关性的分子的应用进行了说明。