Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, California, USA.
J Bacteriol. 2024 Nov 21;206(11):e0020624. doi: 10.1128/jb.00206-24. Epub 2024 Oct 15.
Bacteria and phages are locked in a co-evolutionary arms race where each entity evolves mechanisms to restrict the proliferation of the other. Phage-encoded defense inhibitors have proven powerful tools to interrogate how defense systems function. A relatively common defense system is BREX (bacteriophage exclusion); however, how BREX functions to restrict phage infection remains poorly understood. A BREX system encoded by the ulfamethoazole and rimethoprim (SXT) integrative and conjugative element, Ind5, was recently identified in , the causative agent of the diarrheal disease cholera. The lytic phage ICP1 (nternational Centre for Diarrhoeal Disease Research, Bangladesh holera hage ) that co-circulates with encodes the BREX-inhibitor OrbA, but how OrbA inhibits BREX is unclear. Here, we determine that OrbA inhibits BREX using a unique mechanism from known BREX inhibitors by directly binding to the BREX component BrxC. BrxC has a functional ATPase domain that, when mutated, not only disrupts BrxC function but also alters how BrxC multimerizes. Furthermore, we find that OrbA binding disrupts BrxC-BrxC interactions. We determine that OrbA cannot bind BrxC encoded by the distantly related BREX system encoded by the aSXT Ban9, and thus fails to inhibit this BREX system that also circulates in epidemic . Lastly, we find that homologs of the Ind5 BrxC are more diverse than the homologs of the Ban9 BrxC. These data provide new insight into the function of the BrxC ATPase and highlight how phage-encoded inhibitors can disrupt phage defense systems using different mechanisms.IMPORTANCEWith renewed interest in phage therapy to combat antibiotic-resistant pathogens, understanding the mechanisms bacteria use to defend themselves against phages and the counter-strategies phages evolve to inhibit defenses is paramount. Bacteriophage exclusion (BREX) is a common defense system with few known inhibitors. Here, we probe how the vibriophage-encoded inhibitor OrbA inhibits the BREX system of , the causative agent of the diarrheal disease cholera. By interrogating OrbA function, we have begun to understand the importance and function of a BREX component. Our results demonstrate the importance of identifying inhibitors against defense systems, as they are powerful tools for dissecting defense activity and can inform strategies to increase the efficacy of some phage therapies.
细菌和噬菌体处于协同进化的军备竞赛中,双方都在进化限制对方增殖的机制。噬菌体编码的防御抑制剂已被证明是研究防御系统功能的有力工具。BREX(噬菌体排斥)是一种相对常见的防御系统;然而,BREX 如何限制噬菌体感染仍知之甚少。最近在引起腹泻病霍乱的病原体霍乱弧菌中发现了由磺胺甲恶唑和甲氧苄啶(SXT)整合和转导元件 Ind5 编码的 BREX 系统。与霍乱弧菌共同循环的裂解噬菌体 ICP1(国际腹泻病研究中心,孟加拉国霍乱噬菌体)编码 BREX 抑制剂 OrbA,但 OrbA 如何抑制 BREX 尚不清楚。在这里,我们确定 OrbA 通过直接结合 BREX 成分 BrxC 来利用一种与已知 BREX 抑制剂不同的独特机制来抑制 BREX。BrxC 具有功能性 ATP 酶结构域,当该结构域发生突变时,不仅破坏了 BrxC 的功能,而且改变了 BrxC 的多聚化方式。此外,我们发现 OrbA 结合会破坏 BrxC 之间的相互作用。我们确定 OrbA 不能结合由远缘 BREX 系统编码的 BrxC,该系统也在流行的霍乱弧菌中循环,因此无法抑制该 BREX 系统。最后,我们发现 Ind5 BrxC 的同源物比 Ban9 BrxC 的同源物更加多样化。这些数据为 BrxC ATP 酶的功能提供了新的见解,并强调了噬菌体编码的抑制剂如何使用不同的机制来破坏噬菌体防御系统。
随着人们重新对噬菌体疗法治疗对抗抗生素耐药性病原体产生兴趣,了解细菌用来防御噬菌体的机制以及噬菌体进化出的抑制防御的对策至关重要。噬菌体排斥(BREX)是一种常见的防御系统,其抑制剂知之甚少。在这里,我们探究了弧菌噬菌体编码的抑制剂 OrbA 如何抑制霍乱弧菌的 BREX 系统,霍乱弧菌是引起腹泻病霍乱的病原体。通过探究 OrbA 的功能,我们开始了解 BREX 系统成分的重要性和功能。我们的研究结果表明,识别防御系统抑制剂非常重要,因为它们是研究防御活性的有力工具,并且可以为提高某些噬菌体疗法的疗效提供策略。