Márquez Dalma M, Lien-Medrano Carlos R, Soldano Germán J, Sánchez Cristián G
Instituto de Física Enrique Gaviola (IFEG-CONICET), Universidad Nacional de Córdoba, Córdoba 5000, Argentina.
Bremen Center for Computational Materials Science (BCCMS), Universität Bremen, 28359 Bremen, Germany.
Nanoscale. 2024 Nov 7;16(43):20280-20287. doi: 10.1039/d3nr06557j.
Zinc oxide nanowires (ZnO NWs) possess a unique one-dimensional (1D) morphology that offers a direct pathway for charge transport. In this article, we present the first application of the real-time time-dependent density functional tight-binding (real-time TD-DFTB) method for a model hybrid system consisting of a catechol molecule adsorbed on a ZnO nanowire. The rationalization of the photoinduced electron injection to the 1D nanostructure is attained through quantum dynamics simulations, stressing the role of charge transfer in the new optical transitions upon dye adsorption. We provide a momentum-resolved picture of the photoexcitation dynamics, highlighting the charge accumulation in certain -points, which could improve our understanding of these ultrafast processes. Finally, in the context of dye-sensitized solar cells (DSSCs) based on ZnO NW arrays, we provide a method to calculate the photoresponse obtaining similar results to experiments. This work paves the way towards the fast and accurate theoretical design of 1D optoelectronic nanodevices.
氧化锌纳米线(ZnO NWs)具有独特的一维(1D)形态,为电荷传输提供了直接路径。在本文中,我们首次将实时含时密度泛函紧束缚(real-time TD-DFTB)方法应用于由吸附在ZnO纳米线上的儿茶酚分子组成的模型混合体系。通过量子动力学模拟实现了对光致电子注入到一维纳米结构的合理化解释,强调了染料吸附后电荷转移在新的光学跃迁中的作用。我们提供了光激发动力学的动量分辨图像,突出了某些点处的电荷积累,这有助于我们更好地理解这些超快过程。最后,在基于ZnO NW阵列的染料敏化太阳能电池(DSSC)的背景下,我们提供了一种计算光响应的方法,得到了与实验相似的结果。这项工作为一维光电子纳米器件的快速准确理论设计铺平了道路。